Python 全栈体系【四阶】(七)

第四章 机器学习

六、多项式回归

1. 什么是多项式回归

线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布,线性回归模型就不再适用(下图左),而采用多项式回归可能更好(下图右)。例如:

在这里插入图片描述

2. 多项式模型定义

与线性模型相比,多项式模型引入了高次项,自变量的指数大于 1,例如一元二次方程:

y = w 0 + w 1 x + w 2 x 2 y = w_0 + w_1x + w_2x^2 y=w0+w1x+w2x2

一元三次方程:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 y=w0+w1x+w2x2+w3x3

推广到一元 n 次方程:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 + . . . + w n x n y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 + ... + w_nx^n y=w0+w1x+w2x2+w3x3+...+wnxn

上述表达式可以简化为:

y = ∑ i = 1 N w i x i y = \sum_{i=1}^N w_ix^i y=i=1Nwixi

3. 与线性回归的关系

多项式回归可以理解为线性回归的扩展,在线性回归模型中添加了新的特征值。例如,要预测一栋房屋的价格,有 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3三个特征值,分别表示房子长、宽、高,则房屋价格可表示为以下线性模型:

y = w 1 x 1 + w 2 x 2 + w 3 x 3 + b y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b y=w1x1+w2x2+w3x3+b

对于房屋价格,也可以用房屋的体积,而不直接使用 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3三个特征:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 y=w0+w1x+w2x2+w3x3

相当于创造了新的特征 x , x x, x x,x = 长 _ 宽 _ 高。

以上两个模型可以解释为:

房屋价格是关于长、宽、高三个特征的线性模型

房屋价格是关于体积的多项式模型

因此,可以将一元 n 次多项式变换成 n 元一次线性模型。

4. 多项式回归实现

对于一元 n 次多项式,同样可以利用梯度下降对损失值最小化的方法,寻找最优的模型参数 w 0 , w 1 , w 2 , . . . , w n w_0, w_1, w_2, ..., w_n w0,w1,w2,...,wn。可以将一元 n 次多项式,变换成 n 元一次多项式,求线性回归。以下是一个多项式回归的实现。

# 多项式回归示例
import numpy as np
# 线性模型
import sklearn.linear_model as lm
# 模型性能评价模块
import sklearn.metrics as sm
import matplotlib.pyplot as mp
# 管线模块
import sklearn.pipeline as pl
import sklearn.preprocessing as sp

train_x, train_y = [], []   # 输入、输出样本
with open("poly_sample.txt", "rt") as f:
    for line in f.readlines():
        data = [float(substr) for substr in line.split(",")]
        train_x.append(data[:-1])
        train_y.append(data[-1])

train_x = np.array(train_x)  # 二维数据形式的输入矩阵,一行一样本,一列一特征
train_y = np.array(train_y)  # 一维数组形式的输出序列,每个元素对应一个输入样本
# print(train_x)
# print(train_y)

# 将多项式特征扩展预处理,和一个线性回归器串联为一个管线
# 多项式特征扩展:对现有数据进行的一种转换,通过将数据映射到更高维度的空间中
# 进行多项式扩展后,我们就可以认为,模型由以前的直线变成了曲线
# 从而可以更灵活的去拟合数据
# pipeline连接两个模型
model = pl.make_pipeline(sp.PolynomialFeatures(3), # 多项式特征扩展,扩展最高次项为3
                         lm.LinearRegression())

# 用已知输入、输出数据集训练回归器
model.fit(train_x, train_y)
# print(model[1].coef_)
# print(model[1].intercept_)

# 根据训练模型预测输出
pred_train_y = model.predict(train_x)

# 评估指标
err4 = sm.r2_score(train_y, pred_train_y)  # R2得分, 范围[0, 1], 分值越大越好
print(err4)

# 在训练集之外构建测试集
test_x = np.linspace(train_x.min(), train_x.max(), 1000)
pre_test_y = model.predict(test_x.reshape(-1, 1)) # 对新样本进行预测

# 可视化回归曲线
mp.figure('Polynomial Regression', facecolor='lightgray')
mp.title('Polynomial Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(train_x, train_y, c='dodgerblue', alpha=0.8, s=60, label='Sample')

mp.plot(test_x, pre_test_y, c='orangered', label='Regression')

mp.legend()
mp.show()

打印输出:

0.9224401504764776

执行结果:

在这里插入图片描述

5. 过拟合与欠拟合

5.1 什么是欠拟合、过拟合

在上一小节多项式回归示例中,多项特征扩展器 PolynomialFeatures()进行多项式扩展时,指定了最高次数为 3,该参数为多项式扩展的重要参数,如果选取不当,则可能导致不同的拟合效果。下图显示了该参数分别设为 1、20 时模型的拟合图像:

在这里插入图片描述

这两种其实都不是好的模型。前者没有学习到数据分布规律,模型拟合程度不够,预测准确度过低,这种现象称为“欠拟合”;后者过于拟合更多样本,以致模型泛化能力(新样本的适应性)变差,这种现象称为“过拟合”。欠拟合模型一般表现为训练集、测试集下准确度都比较低;过拟合模型一般表现为训练集下准确度较高、测试集下准确度较低。 一个好的模型,不论是对于训练数据还是测试数据,都有接近的预测精度,而且精度不能太低。

【思考 1】以下哪种模型较好,哪种模型较差,较差的原因是什么?

训练集 R2 值测试集 R2 值
0.60.5
0.90.6
0.90.88

【答案】第一个模型欠拟合;第二个模型过拟合;第三个模型适中,为可接受的模型。

【思考 2】以下哪个曲线为欠拟合、过拟合,哪个模型拟合最好?

在这里插入图片描述

【答案】第一个模型欠拟合;第三个模型过拟合;第二个模型拟合较好。

5.2 如何处理欠拟合、过拟合

欠拟合:提高模型复杂度,如增加特征、增加模型最高次幂等等;

过拟合:降低模型复杂度,如减少特征、降低模型最高次幂等等。

七、线性回归模型变种

1. 正则化

1.1 什么是正则化

过拟合还有一个常见的原因,就是模型参数值太大,所以可以通过抑制参数的方式来解决过拟合问题。如下图所示,右图产生了一定程度过拟合,可以通过弱化高次项的系数(但不删除)来降低过拟合。

在这里插入图片描述

例如,可以通过在 θ 3 , θ 4 \theta_3, \theta_4 θ3,θ4的系数上添加一定的系数,来压制这两个高次项的系数,这种方法称为正则化。但在实际问题中,可能有更多的系数,我们并不知道应该压制哪些系数,所以,可以通过收缩所有系数来避免过拟合。

1.2 正则化的定义

正则化是指,在目标函数后面添加一个范数,来防止过拟合的手段,这个范数定义为:

∣ ∣ x ∣ ∣ p = ( ∑ i = 1 N ∣ x ∣ p ) 1 p ||x||_p = (\sum_{i=1}^N |x|^p)^{\frac{1}{p}} ∣∣xp=(i=1Nxp)p1

当 p=1 时,称为 L1 范数(即所有系数绝对值之和):

∣ ∣ x ∣ ∣ 1 = ( ∑ i = 1 N ∣ x ∣ ) ||x||_1 = (\sum_{i=1}^N |x|) ∣∣x1=(i=1Nx)

当 p=2 是,称为 L2 范数(即所有系数平方之和再开方):

∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 N ∣ x ∣ 2 ) 1 2 ||x||_2 = (\sum_{i=1}^N |x|^2)^{\frac{1}{2}} ∣∣x2=(i=1Nx2)21

通过对目标函数添加正则项,整体上压缩了参数的大小,从而防止过拟合。

2. Lasso 回归与岭回归

Lasso 回归和岭回归(Ridge Regression)都是在标准线性回归的基础上修改了损失函数的回归算法。 Lasso 回归全称为 Least absolute shrinkage and selection operator,又译“最小绝对值收敛和选择算子”、”套索算法”,其损失函数如下所示:

E = 1 n ( ∑ i = 1 N y i − y i ′ ) 2 + λ ∣ ∣ w ∣ ∣ 1 E = \frac{1}{n}(\sum_{i=1}^N y_i - y_i')^2 + \lambda ||w||_1 E=n1(i=1Nyiyi)2+λ∣∣w1

岭回归损失函数为:

E = 1 n ( ∑ i = 1 N y i − y i ′ ) 2 + λ ∣ ∣ w ∣ ∣ 2 E = \frac{1}{n}(\sum_{i=1}^N y_i - y_i')^2 + \lambda ||w||_2 E=n1(i=1Nyiyi)2+λ∣∣w2

从逻辑上说,Lasso 回归和岭回归都可以理解为通过调整损失函数,减小函数的系数,从而避免过于拟合于样本,降低偏差较大的样本的权重和对模型的影响程度。

线性模型变种模型:在损失函数后面 + 正则项

  • 损失函数 + L1 范数 -> Lasso 回归
  • 损失函数 + L2 范数 -> 岭回归

以下关于 Lasso 回归于岭回归的 sklearn 实现:

# Lasso回归和岭回归示例
import numpy as np
# 线性模型
import sklearn.linear_model as lm
# 模型性能评价模块
import sklearn.metrics as sm
import matplotlib.pyplot as mp

x, y = [], []  # 输入、输出样本
with open("abnormal.txt", "rt") as f:
    for line in f.readlines():
        data = [float(substr) for substr in line.split(",")]
        x.append(data[:-1])
        y.append(data[-1])

x = np.array(x)  # 二维数据形式的输入矩阵,一行一样本,一列一特征
y = np.array(y)  # 一维数组形式的输出序列,每个元素对应一个输入样本
# print(x)
# print(y)

# 创建线性回归器
model = lm.LinearRegression()
# 用已知输入、输出数据集训练回归器
model.fit(x, y)
# 根据训练模型预测输出
pred_y = model.predict(x)

# 创建岭回归器并进行训练
# Ridge: 第一个参数为正则强度,该值越大,异常样本权重就越小
model_2 = lm.Ridge(alpha=200, max_iter=1000)  # 创建对象, max_iter为最大迭代次数
model_2.fit(x, y)  # 训练
pred_y2 = model_2.predict(x)  # 预测

# lasso回归
model_3 = lm.Lasso(alpha=0.5,  # L1范数相乘的系数
                   max_iter=1000)  # 最大迭代次数
model_3.fit(x, y)  # 训练
pred_y3 = model_3.predict(x)  # 预测

# 可视化回归曲线
mp.figure('Linear & Ridge & Lasso', facecolor='lightgray')
mp.title('Linear & Ridge & Lasso', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.8, s=60, label='Sample')
sorted_idx = x.T[0].argsort()

mp.plot(x[sorted_idx], pred_y[sorted_idx], c='orangered', label='Linear')  # 线性回归
mp.plot(x[sorted_idx], pred_y2[sorted_idx], c='limegreen', label='Ridge')  # 岭回归
mp.plot(x[sorted_idx], pred_y3[sorted_idx], c='blue', label='Lasso')  # Lasso回归

mp.legend()
mp.show()

以下是执行结果:

在这里插入图片描述

八、模型保存与加载

可以使用 Python 提供的功能对模型对象进行保存。使用方法如下:

import pickle
# 保存模型
pickle.dump(模型对象, 文件对象)
# 加载模型
model_obj = pickle.load(文件对象)

保存训练模型应该在训练完成或评估完成之后,完整代码如下:

# 模型保存示例
import numpy as np
import sklearn.linear_model as lm # 线性模型
import pickle

x = np.array([[0.5], [0.6], [0.8], [1.1], [1.4]])  # 输入集
y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集

# 创建线性回归器
model = lm.LinearRegression()
# 用已知输入、输出数据集训练回归器
model.fit(x, y)

print("训练完成.")

# 保存训练后的模型
with open('linear_model.pkl', 'wb') as f:
    pickle.dump(model, f)
    print("保存模型完成.")

执行完成后,可以看到与源码相同目录下多了一个名称为 linear_model.pkl 的文件,这就是保存的训练模型。使用该模型代码:

# 模型加载示例
import numpy as np
import sklearn.linear_model as lm  # 线性模型
import sklearn.metrics as sm  # 模型性能评价模块
import matplotlib.pyplot as mp
import pickle

x = np.array([[0.5], [0.6], [0.8], [1.1], [1.4]])  # 输入集
y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集

# 加载模型
with open('linear_model.pkl', 'rb') as f:
    model = pickle.load(f)
    print("加载模型完成.")

# 根据加载的模型预测输出
pred_y = model.predict(x)

# 可视化回归曲线
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='blue', alpha=0.8, s=60, label='Sample')

mp.plot(x, pred_y, c='orangered', label='Regression')

mp.legend()
mp.show()

执行结果和训练模型预测结果一样。

九、总结

1. 什么是线性模型

线性模型是自然界最简单的模型之一,反映自变量、因变量之间的等比例增长关系。

2. 什么时候使用线性回归

线性模型只能用于满足线性分布规律的数据中。

3. 如何实现线性回归

给定一组样本,给定初始的 w 和 b,通过梯度下降法求最优的 w 和 b。

十、补充知识

1. R2 系数详细计算

R2 系数详细计算过程如下:

若用 y i y_i yi表示真实的观测值,用 y ˉ \bar{y} yˉ表示真实观测值的平均值,用 y i ^ \hat{y_i} yi^表示预测值,则有以下评估指标:

回归平方和(SSR)

S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR = \sum_{i=1}^{n}(\hat{y_i} - \bar{y})^2 SSR=i=1n(yi^yˉ)2

  • 估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和。

残差平方和(SSE)

S S E = ∑ i = 1 n ( y i − y i ^ ) 2 SSE = \sum_{i=1}^{n}(y_i-\hat{y_i} )^2 SSE=i=1n(yiyi^)2

  • 即估计值与真实值的误差,反映模型拟合程度。

总离差平方和(SST)

S S T = S S R + S S E = ∑ i = 1 n ( y i − y ˉ ) 2 SST =SSR + SSE= \sum_{i=1}^{n}(y_i - \bar{y})^2 SST=SSR+SSE=i=1n(yiyˉ)2

  • 即平均值与真实值的误差,反映与数学期望的偏离程度.
R2_score 计算公式

R2_score,即决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。计算公式:

R 2 = 1 − S S E S S T R^2=1-\frac{SSE}{SST} R2=1SSTSSE

即:

R 2 = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)2}{\sum_{i=1}{n} (y_i - \bar{y})^2} R2=1i=1n(yiyˉ)2i=1n(yiy^i)2

进一步化简为:

R 2 = 1 − ∑ i ( y i − y i ) 2 / n ∑ i ( y i − y ^ ) 2 / n = 1 − R M S E V a r R^2 = 1 - \frac{\sum\limits_i(y_i - y_i)^2 / n}{\sum\limits_i(y_i - \hat{y})^2 / n} = 1 - \frac{RMSE}{Var} R2=1i(yiy^)2/ni(yiyi)2/n=1VarRMSE

分子就变成了常用的评价指标均方误差 MSE,分母就变成了方差,对于 R 2 R^2 R2可以通俗地理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差。

R2_score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好。

R2_score = 0,此时分子等于分母,样本的每项预测值都等于均值。

2. 线性回归损失函数求导过程

线性函数定义为:

y = w 0 + w 0 x 1 y = w_0 + w_0 x_1 y=w0+w0x1

采用均方差损失函数:

l o s s = 1 2 ( y − y ′ ) 2 loss = \frac{1}{2} (y - y')^2 loss=21(yy)2

其中,y 为真实值,来自样本;y’为预测值,即线性方程表达式,带入损失函数得:

l o s s = 1 2 ( y − ( w 0 + w 1 x 1 ) ) 2 loss = \frac{1}{2} (y - (w_0 + w_1 x_1))^2 loss=21(y(w0+w1x1))2

将该式子展开:

l o s s = 1 2 ( y 2 − 2 y ( w 0 + w 1 x 1 ) + ( w 0 + w 1 x 1 ) 2 ) = 1 2 ( y 2 − 2 y ∗ w 0 − 2 y ∗ w 1 x 1 + w 0 2 + 2 w 0 ∗ w 1 x 1 + w 1 2 x 1 2 ) loss = \frac{1}{2} (y^2 - 2y(w_0 + w_1 x_1) + (w_0 + w_1 x_1)^2) =\\\frac{1}{2} (y^2 - 2y*w_0 - 2y*w_1x_1 + w_0^2 + 2w_0*w_1 x_1 + w_1^2x_1^2) \\ loss=21(y22y(w0+w1x1)+(w0+w1x1)2)=21(y22yw02yw1x1+w02+2w0w1x1+w12x12)

w 0 w_0 w0求导:

∂ l o s s ∂ w 0 = 1 2 ( 0 − 2 y − 0 + 2 w 0 + 2 w 1 x 1 + 0 ) = 1 2 ( − 2 y + 2 w 0 + 2 w 1 x 1 ) = 1 2 ∗ 2 ( − y + ( w 0 + w 1 x 1 ) ) = ( − y + y ′ ) = − ( y − y ′ ) \frac{\partial loss}{\partial w_0} = \frac{1}{2}(0-2y-0+2w_0 + 2w_1 x_1 +0) \\=\frac{1}{2}(-2y + 2 w_0 + 2w_1 x_1) \\= \frac{1}{2} * 2(-y + (w_0 + w_1 x_1)) \\=(-y + y') = -(y - y') w0loss=21(02y0+2w0+2w1x1+0)=21(2y+2w0+2w1x1)=212(y+(w0+w1x1))=(y+y)=(yy)

w 1 w_1 w1求导:

∂ l o s s ∂ w 1 = 1 2 ( 0 − 0 − 2 y ∗ x 1 + 0 + 2 w 0 x 1 + 2 w 1 x 1 2 ) = 1 2 ( − 2 y x 1 + 2 w 0 x 1 + 2 w 1 x 1 2 ) = 1 2 ∗ 2 x 1 ( − y + w 0 + w 1 x 1 ) = x 1 ( − y + y ′ ) = − x 1 ( y − y ′ ) \frac{\partial loss}{\partial w_1} = \frac{1}{2}(0-0-2y*x_1+0+2 w_0 x_1 + 2 w_1 x_1^2) \\= \frac{1}{2} (-2y x_1 + 2 w_0 x_1 + 2w_1 x_1^2) \\= \frac{1}{2} * 2 x_1(-y + w_0 + w_1 x_1) \\= x_1(-y + y') = - x_1(y - y') w1loss=21(002yx1+0+2w0x1+2w1x12)=21(2yx1+2w0x1+2w1x12)=212x1(y+w0+w1x1)=x1(y+y)=x1(yy)

推导完毕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/257326.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【开源软件】最好的开源软件-2023-第六名 Solid

自我介绍 做一个简单介绍,酒架年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【…

ac转dc电源芯片SM7025 支持12V/18V输出电压

AC转DC电源芯片是一种能够将交流电转换为直流电的重要器件,广泛应用于电子设备和电源系统中。它可以提供稳定的直流电源,为设备的正常运行提供保障。 AC转DC电源芯片的工作原理是利用内部的整流、滤波、变压器和稳压等电路,将输入的交流电转换…

深耕元宇宙领域,强势发力文旅市场

2023年12月14日,“承上启下 智元宇宙:2024元宇宙与人工智能应用场景闭门会——苏州”在苏州泰山路2号百度VR(苏州)赋能中心成功举办。会议邀请了苏州本地的相关优秀企业代表、科创精英、投资与行业技术代表、公司创始人共计约50余…

MyBatis持久层框架

四、MyBatis持久层框架 目录 一、Mybatis简介 1. 简介2. 持久层框架对比3. 快速入门(基于Mybatis3方式) 二、日志框架扩展 1. 用日志打印替代sout2. Java日志体系演变3. 最佳拍档用法4. Lombok插件的使用 4.1 Lombok简介4.2 Lombok安装4.3 Lombok使用注…

关于“Python”的核心知识点整理大全29

目录 11.2.4 方法 setUp() 注意 11.3 小结 第二部分 项目1 外星人入侵 第12 章 武装飞船 注意 12.1 规划项目 12.2 安装 Pygame 注意 12.2.1 使用 pip 安装 Python 包 注意 如果你启动终端会话时使用的是命令python3,那么在这里应使用命令…

人工智能超分辨率重建:揭秘图像的高清奇迹

导言 人工智能超分辨率重建技术,作为图像处理领域的一项重要创新,旨在通过智能算法提升图像的分辨率,带来更为清晰和细致的视觉体验。本文将深入研究人工智能在超分辨率重建方面的原理、应用以及技术挑战。 1. 超分辨率重建的基本原理 …

Human Perception of Visual Information (1)

There is one thing the photograph must contain, the humanity of the moment. —Robert Frank 照片必须包含一件事,那就是这一刻的人性。 罗伯特。弗兰克 perface 利用机器学习和大规模数据收集的最新成果,客观视觉属性(如语义内容和几何关系)的计算…

数据结构(八):图介绍及面试常考算法

一、图介绍 1、定义 图由结点的有穷集合V和边的集合E组成。其中,结点也称为顶点。一对结点(x, y)称为边(edge),表示顶点x连接到顶点y。边可以包含权重/成本,显示从顶点x到y所需的成…

分享一个冬日雪景

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 先看效果&#xff1a; 再看源码&#xff1a; <body><div id"container"><div id"layer-1" class…

【Lidar】Open3D点云DBSCAN聚类算法:基于密度的点云聚类(单木分割)附Python代码

1 DBSCAN算法介绍 DBSCAN聚类算法是一种基于密度的聚类算法&#xff0c;全称为“基于密度的带有噪声的空间聚类应用”&#xff0c;英文名称为Density-Based Spatial Clustering of Applications with Noise。 DBSCAN聚类算法能够发现任意形状的类别&#xff0c;并且对噪音数据具…

Vue3+Echarts:堆积柱状图的绘制

一、需求 在Vue3项目中&#xff0c;想用Echarts来绘制堆积柱状图&#xff0c;去展示最近一周APP在不同渠道的登录人数效果如下&#xff1a; 二、实现 (关于Echarts的下载安装以及图表的样式设计&#xff0c;此处不展开&#xff01;) 1、Templates部分 <template>&l…

Metashape 自定义比例尺 / 无POS时如何制作DEM

前言操作步骤 前言 Metashape 自定义比例尺 和 无POS时如何制作DEM&#xff0c;此二者的操作步骤本质上是一样的。 当我们输入的照片没有POS&#xff0c;且没有做像控点的时候&#xff0c;比如我们仅仅拍摄了一个比较小的物体&#xff0c;可能是一瓶饮料或者一个椅子。 那么此…

用于噪声和分段相位测量的鲁棒相位展开算法(全文翻译-2区Optics Express)

摘要&#xff1a;本文提出了一种在存在噪声和分段相位的情况下进行相位展开的鲁棒相位展开算法&#xff08;RPUA&#xff09;。RPUA方法提出了一种新的相位导数模型&#xff0c;结合纠错迭代来实现抗噪声效果。此外&#xff0c;它使用数值载波频率和条纹外推法在空间域中桥接相…

git缓存区、本地仓库、远程仓库的同步问题(初始化库无法pull和push)

git新建库与本地库同步 gitee使用教程&#xff0c;git的下载与安装接不在叙述了。 新建远程仓库 新建远程仓库必须要使用仓库提供的api&#xff0c;也就是仓库门户网站&#xff0c;例如gitee&#xff0c;github&#xff0c;gitlab等。在上图中使用gitee网址中新建了一个test仓…

你真的会写 Prompt ? 剖析 RAG 应用中的指代消解

随着 ChatGPT 等大语言模型(LLM)的不断发展&#xff0c;越来越多的研究人员开始关注语言模型的应用。 其中&#xff0c;检索增强生成&#xff08;Retrieval-augmented generation&#xff0c;RAG&#xff09;是一种针对知识密集型 NLP 任务的生成方法&#xff0c;它通过在生成过…

带外应用程序安全测试 (OAST)

Burp Suite的polling.oastify.com的dns请求类似全流量中的旁路检测&#xff0c;或是云原生中的边车模式检测&#xff0c;类似引用带外的DNSLog。 一、传统的动态测试 传统的动态测试简单而优雅。从本质上讲&#xff0c;它将有效负载发送到目标应用程序并分析返回的响应 - 就像…

清华提出ViLa,揭秘 GPT-4V 在机器人视觉规划中的潜力

人类在面对简洁的语言指令时&#xff0c;可以根据上下文进行一连串的操作。对于“拿一罐可乐”的指令&#xff0c;若可乐近在眼前&#xff0c;下意识的反应会是迅速去拿&#xff1b;而当没看到可乐时&#xff0c;人们会主动去冰箱或储物柜中寻找。这种自适应的能力源于对场景的…

Vim命令大全(超详细,适合反复阅读学习)

Vim命令大全 Vim简介Vim中的模式光标移动命令滚屏与跳转文本插入操作文本删除操作文本复制、剪切与粘贴文本的修改与替换文本的查找与替换撤销修改、重做与保存编辑多个文件标签页与折叠栏多窗口操作总结 Vim是一款文本编辑器&#xff0c;是Vi编辑器的增强版。Vim的特点是快速、…

云仓酒庄的品牌雷盛红酒LEESON分享起泡酒要醒酒吗?

常喝葡萄酒的朋友知道&#xff0c;陈年酒、单宁含量重的红酒都需要在喝之前进行醒酒&#xff0c;有朋友问了&#xff0c;起泡酒需要醒酒吗&#xff1f;关于起泡酒醒酒有两种声音&#xff0c;有人反对&#xff0c;认为醒酒会让起泡酒失去细腻的泡泡。有人支持认为醒酒可以让起泡…

蜘点云原生之 KubeSphere 落地实践过程

作者&#xff1a;池晓东&#xff0c;蜘点商业网络服务有限公司技术总监&#xff0c;从事软件开发设计 10 多年&#xff0c;喜欢研究各类新技术&#xff0c;分享技术。 来源&#xff1a;本文由 11 月 25 日广州站 meetup 中讲师池晓东整理&#xff0c;整理于该活动中池老师所分享…
最新文章