2017年第六届数学建模国际赛小美赛B题电子邮件中的笔迹分析解题全过程文档及程序

2017年第六届数学建模国际赛小美赛

B题 电子邮件中的笔迹分析

原题再现:

  笔迹分析是一种非常特殊的调查形式,用于将人们与书面证据联系起来。在法庭或刑事调查中,通常要求笔迹鉴定人确认笔迹样本是否来自特定的人。由于许多语言证据出现在电子邮件中,从广义上讲,笔迹分析还包括如何根据电子邮件的语言特征识别作者的问题。
  作者归属是语言学家开始使用语言风格的可识别特征(从词频到首选句法结构)来识别有争议文本的作者的过程。电子邮件内容短小,作者语言风格明显。请构造一个有效的模型,通过捕获电子邮件的语言特征来识别作者。您可以使用安然电子邮件数据集来培训和测试您的模型。
  安然电子邮件数据集链接:http://bailando.sims.berkeley.edu/enron_email.html

整体求解过程概述(摘要)

  本文开发了一个工具,可以用来识别这类电子邮件的作者。作者的风格可以通过测量文本中的各种茎秆特征来简化为一种模式。电子邮件还包含可测量的宏结构特征。这些特征可与支持向量机(SVM)学习算法一起使用,以分类或将电子邮件的作者身份归属给作者,提供适当的消息样本以供比较。
  首先,第3章讨论了实验过程的计划和范围,该实验过程用于确定分析电子邮件的作者特征和识别电子邮件的作者身份是否可行。概述了需要评估的特征列表,并说明了为什么要使用支持向量机(SVM)算法进行这项工作。特征集包括但不限于:基于文档的特征、基于单词的特征、虚词比率、字长频率分布、搭配频率、基于字符的特征和字母2-gram。
  接下来,第4章详细介绍了为对电子邮件作者进行系统分类而进行的实验,并报告了实验结果。这是通过首先进行一系列实验来完成的,这些实验旨在揭示纯文本块(不是电子邮件)的成功SVM作者属性的基线值,从而设置特征集、文本大小和消息数量的约束。这些基线实验为该项目的核心——识别电子邮件文本中包含的有用特性的任务——设置了框架。本章报告的实验列表见表12(第25页)。第38页报告了这些结果,证实了迄今使用的方法可作为进一步研究电子邮件数据的基础。
  最后,第5章讨论了电子邮件的属性和分析。第5.1节讨论了对电子邮件数据进行的初步实验。电子邮件数据用于本章中讨论的实验,因此可以首次测试电子邮件特定功能的影响。第5.2节概述了如何改进结果。第5.3节确定了电子邮件中讨论主题的影响。本研究的目的是使用加权的宏平均F1度量,在大约85%的水平上实现电子邮件数据的正确分类。本章报告的结果表明,在增加了电子邮件的结构特征之后,这一目标就实现了。本章报告的实验列表见表22(第39页)。
  最后一章对本文的主要结论进行了总结。这也为今后的工作提出了一些可能的扩展。

模型假设:

  •我们已经考虑的因素发挥着至关重要的作用。
  •我们收集的数据是准确的。
  •人们的写作习惯没有改变。

问题分析:

  问题背景:
  许多公司和机构已经开始依赖因特网来处理业务,随着个人使用因特网,特别是自万维网建立以来,电子邮件流量显著增加。Lyman和Varian(2000年)估计,2000年将发送5 000亿至6 000亿封电子邮件,进一步估计到2003年,每年发送的电子邮件将超过2万亿封。在GVU’s1第8次WWW用户调查中(Pitkow等人,1997年),84%的受访者表示电子邮件是不必要的。
  随着电子邮件流量的增加,出于不正当的原因,电子邮件的使用量也随之增加。误用的例子包括:发送垃圾邮件或未经请求的商业电子邮件(UCE),这是垃圾邮件的广泛传播;发送威胁;发送恶作剧;以及计算机病毒和蠕虫的传播。此外,贩运毒品或儿童色情制品等犯罪活动很容易通过发送简单的电子邮件来协助和教唆。

  本文讨论的问题包括:
  •设置使用支持向量机进行分类实验的框架
  •选择候选文体特征以解决电子邮件作者分类问题
  •确定测试电子邮件作者身份分类是否成功的实验序列

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

with open('x_C.pickle','rb') as f:
 x_C = pickle.load(f)
 f.close()
with open('y.pickle','rb') as f:
 y = pickle.load(f)
 f.close()
with open('x_W.pickle','rb') as f:
 x_W = pickle.load(f)
 f.close()
with open('x_F.pickle','rb') as f:
 x_F = pickle.load(f)
 f.close()
with open('x_L.pickle','rb') as f:
 x_L = pickle.load(f)
 f.close()
with open('x_C_W.pickle','rb') as f:
 x_C_W = pickle.load(f)
 f.close()
with open('x_C_F.pickle','rb') as f:
 x_C_F = pickle.load(f)
 f.close()
with open('x_W_F.pickle','rb') as f:
 x_W_F = pickle.load(f)
 f.close()
with open('x_F_L.pickle','rb') as f:
 x_F_L = pickle.load(f)
 f.close()
with open('x_F_C_W.pickle','rb') as f:
 x_F_C_W = pickle.load(f)
 f.close()
with open('x_F_C_L.pickle','rb') as f:
 x_F_C_L = pickle.load(f)
 f.close()
with open('x_F_L_W.pickle','rb') as f:
 x_F_L_W = pickle.load(f)
 f.close()
with open('x_F_C_L_W.pickle','rb') as f:
 x_F_C_L_W = pickle.load(f)
 f.close()
#test diffrent feaure effect (x_C)
x_train, x_test, y_train, y_test = train_test_split(x_C, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_C accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_W)
x_train, x_test, y_train, y_test = train_test_split(x_W, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_W accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F)
x_train, x_test, y_train, y_test = train_test_split(x_F, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_L)
x_train, x_test, y_train, y_test = train_test_split(x_L, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_L accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_C_W)
x_train, x_test, y_train, y_test = train_test_split(x_C_W, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_C_W accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_C_F)
x_train, x_test, y_train, y_test = train_test_split(x_C_F, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_C_F accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_W_F)
x_train, x_test, y_train, y_test = train_test_split(x_W_F, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_W_F accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F_L)
x_train, x_test, y_train, y_test = train_test_split(x_F_L, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F_L accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F_C_W)
x_train, x_test, y_train, y_test = train_test_split(x_F_C_W, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F_C_W accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F_C_L)
x_train, x_test, y_train, y_test = train_test_split(x_F_C_L, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F_C_L accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F_L_W)
x_train, x_test, y_train, y_test = train_test_split(x_F_L_W, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F_L_W accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent feaure effect (x_F_C_L_W)
x_train, x_test, y_train, y_test = train_test_split(x_F_C_L_W, y, test_size=0.2, 
random_state=42)
svclf = SVC(kernel = 'linear')#default with 'rbf'
svclf.fit(x_train,y_train)
pred = svclf.predict(x_test);
print("x_F_C_L_W accuracy: ",sum(pred == y_test)/len(y_test))
#test diffrent kernel effect
new_kernel =['Linear','Polynomial','Radial basis function','Sigmoid tanh']
x_train, x_test, y_train, y_test = train_test_split(x_F_C_L_W, y, test_size=0.2, 
random_state=42)
for kernel in new_kernel:
 svclf = SVC(kernel=kernel)
 svclf.fit(x_train, y_train)
 pred = svclf.predict(x_test);
 print(kernel," accuracy: ", sum(pred == y_test)/len(y_test))
#test diffrent gama effect
gama_lst =[0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0]
x_train, x_test, y_train, y_test = train_test_split(x_F_C_L_W, y, test_size=0.2, 
random_state=42)
for gama in gama_lst:
 svclf = SVC(kernel = 'linear',gamma=gama)
 svclf.fit(x_train, y_train)
 pred = svclf.predict(x_test);
 print('gama=',gama," accuracy: ", sum(pred == y_test)/len(y_test))
#test diffrent degree effect
x_train, x_test, y_train, y_test = train_test_split(x_F_C_L_W, y, test_size=0.2, 
random_state=42)
for degree in range(1,11):
 svclf = SVC(kernel = 'linear',degree=degree)
 svclf.fit(x_train, y_train)
 pred = svclf.predict(x_test);
 print('gama=',degree," accuracy: ", sum(pred == y_test)/len(y_test))
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/260770.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 常用命令之 tar 命令用法介绍

📑Linux/Ubuntu 常用命令归类整理 tar 命令在 Ubuntu 系统中是用来打包和解包文件的工具。tar 命令可以将多个文件或目录打包成一个 tar 文件,也可以将 tar 文件解包成原来的文件或目录。 tar 命令的常用参数如下 c:创建一个新的 tar 文件…

记一次渗透测试信息收集(证书+c段+历史漏洞搜索)

目录 一、当资产列表挖掘不出漏洞的时候 二、信息收集之证书信息收集(部分方式) 三、信息收集之C段信息收集 四、信息收集之某网关RCE 一、当资产列表挖掘不出漏洞的时候 二、信息收集之证书信息收集(部分方式) Fofa语句&#…

JS常用方法

1、reduce()统计 (1)数组和 计算并返回给定数组 arr 中所有元素的总和 let arr [1,4,3,6,2,6] function sum(){const newArr arr.reduce((pre,item)>{return preitem})console.log(newArr);//22 } sum() 2、filter()过滤器 (1&#…

el-table 实现行拖拽排序

element ui 表格实现拖拽排序的功能&#xff0c;可以借助第三方插件Sortablejs来实现。 引入sortablejs npm install sortablejs --save组件中使用 import Sortable from sortablejs;<el-table ref"el-table":data"listData" row-key"id" …

智能优化算法应用:基于龙格-库塔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于龙格-库塔算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于龙格-库塔算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.龙格-库塔算法4.实验参数设定5.算法结果…

红队打靶练习:WINTERMUTE: 1

前言 网络扫描&#xff08;Nmap、netdiscover&#xff09; HTTP 服务枚举 使用电子邮件日志文件在浏览器中进行目录遍历 利用 SMTP RCPT 选项中的操作系统命令注入 生成 PHP 后门 (Msfvenom) 执行RCPT选项中嵌入的后门 反向连接&#xff08;Metasploit&#xff09; 导入 pytho…

一键在线获取APP公钥、包名、签名及备案信息方法介绍

​ 目录 一键在线获取APP公钥、包名、签名及备案信息方法介绍 摘要 引言 一键获取APP包信息 操作步骤 ​编辑 解析报告 总结 致谢 关键词 参考资料 声明 摘要 本文介绍了一款在线APP解析工具&#xff0c;可以一键获取APP的公钥、包名、签名等基础信息&#xff0c;…

spring依赖注入对象类型属性----外部bean的引入(bean和bean之间的引入)

文章目录 注入普通属性的方式1、set方法注入2、构造器&#xff08;构造方法&#xff09;注入 总结&#xff1a;注入对象类型属性 注入普通属性的方式 1、set方法注入 2、构造器&#xff08;构造方法&#xff09;注入 总结&#xff1a; set方法注入和构造器方法的注入&#…

C语言——高精度乘法

一、引子 高精度乘法相较于高精度加法和减法有更多的不同&#xff0c;加法和减法是一位对应一位进行操作的&#xff0c;而乘法是一个数的每一位对另一个数的每一位进行操作&#xff0c;需要的计算步骤更多。 二、核心算法 void Calculate(int num1[], int num2[], int numres…

Linux docker安装nacos

1&#xff1a;首先下载安装docker&#xff0c;这里不做描述&#xff0c;可以自行百度安装。 2&#xff1a;通过docker下载nacos&#xff0c; docker pull nacos/nacos-server:latest3&#xff1a;搭建临时nacos容器&#xff0c;此步骤的目的是为了获取nacos的配置文件和日志 …

总结两套JVM模版配置

大白话&#xff1a; 1.秒杀场景&#xff0c;Eden会设置的比较大&#xff1b; 2.FullGC是代价最高的GC&#xff0c;频率越低越好。 大白话&#xff1a; 一般情况下&#xff0c;设置JVM堆内存为物理机内存的一半&#xff0c;最大不超过3/4; -Xmn3072M - 设置新生代的内存大小&a…

『 C++ 』二叉树进阶OJ题

文章目录 根据二叉树创建字符串 &#x1f996;&#x1f969; 题目描述&#x1f969; 解题思路&#x1f969; 代码 二叉树的层序遍历(分层遍历) &#x1f996;&#x1f969; 题目描述&#x1f969; 解题思路&#x1f969; 代码 二叉树的层序遍历(分层遍历)Ⅱ &#x1f996;&…

uniapp websocket的使用和封装

在uniapp中socket分为两种形式&#xff0c;第一种适用于只有一个socket链接&#xff0c;第二种适用于多个socket链接。传送门 这里以socketTask为列子封装 在utils新建一个文件 在你要使用的页面引入&#xff0c;我这是聊天那种&#xff0c;所以我在拿到用户信息之后连接sock…

【STM32单片机入门-1】堆栈/全局变量,局部变量,静态全局变量,局部静态变量等

1&#xff0c;堆栈对比 堆&#xff1a;由程序员分配和释放。容易产生碎片&#xff0c;使用方便&#xff0c;地址分配使用从下到上 栈&#xff1a;用来存放函数地址和局部参数&#xff0c;主函数使用时&#xff0c;要对函数的首地址断点保存&#xff0c;地址分配从上到下&#…

微软官方发布的C#开源、免费、实用的Windows工具箱

前言 今天分享一款由微软官方发布的C#开源、免费、实用的Windows工具箱&#xff08;帮助用户调整和简化Windows系统的体验&#xff0c;从而提高工作效率&#xff09;&#xff1a;Microsoft PowerToys。 项目介绍 Microsoft PowerToys 是使用 C 和 C# 编程语言开发的。它利用了 …

ansible的playbook

1、playbook的组成部分 &#xff08;1&#xff09;task任务&#xff1a;在目标主机上执行的操作&#xff0c;使用模块定义这些操作&#xff0c;每个任务都是一个模块的调用 &#xff08;2&#xff09;variables变量&#xff1a;存储和传递数据&#xff08;变量可以自定义&…

DRF从入门到精通二(Request源码分析、DRF之序列化组件)

文章目录 一、Request对象源码分析区分原生request和新生request新的request还能像原来的reqeust一样使用吗源码片段分析总结&#xff1a; 二、DRF之序列化组件序列化介绍序列化步骤序列化组件的基本使用反序列化基本使用反序列化的新增反序列化的新增删除单条 反序列化的校验 …

天猫数据分析(天猫查数据工具):2023年天猫平台假发行业市场销售数据分析报告

如今&#xff0c;由于人们工作和生活的压力较大&#xff0c;居民脱发问题严重&#xff0c;且脱发群体倾向于80后和90后&#xff0c;逐渐向低龄化发展。除脱发外&#xff0c;在颜值经济的背景下&#xff0c;人们越来越注重外貌和形象&#xff0c;假发作为一种改善发型的工具&…

Graylog配置日志保留策略

找了半天没找到说的清楚的&#xff0c;只能抠官方文档 graylog的归档&#xff08;日志持久化&#xff09;只有付费版才能用&#xff0c;所以日志只能存在es中 1.理解官方给出的几个概念 轮转策略 (Index Rotation Strategy): 轮转策略定义了何时创建新的索引以及何时关闭旧的索…

ssm基于vue技术的绿色蔬菜销售管理系统+vue论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本绿色蔬菜销售管理就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息…
最新文章