NiNNet

目录

一、网络介绍

1、全连接层存在的问题

2、NiN的解决方案(NiN块)

3、NiN架构

4、总结

二、代码实现

1、定义NiN卷积块

2、NiN模型

3、训练模型


一、网络介绍

       NiN(Network in Network)是一种用于图像识别任务的卷积神经网络模型。它由谷歌研究员Min Lin、Qiang Chen和Shouyuan Chen于2013年提出。NiN的设计理念是通过引入“网络中的网络”结构来增强模型的表示能力。

1、全连接层存在的问题

       在之前的网络(比如AlexNet和VGGNet)后面都用了几个比较大的全连接层,全连接层中的参数相比于卷积层多得多,一个网络的参数大多都在全连接层,并且可以认为主要分布在卷积层之后的第一个全连接层。因此全连接层最大的问题是可能造成过拟合。

2、NiN的解决方案(NiN块)

       NiN的核心思想是使用1x1卷积层替代传统的全连接层。传统的卷积神经网络通常使用卷积层提取特征,然后通过全连接层进行分类。而NiN则在卷积层中引入了一种称为“1x1卷积”的操作,这个操作可以看作是在每个像素点上进行的全连接操作。通过使用1x1卷积,NiN能够在卷积层中引入非线性,增加模型的表达能力,并且减少了参数的数量。

       和VGG一样,NiN也有自己的块(NiN块),每一个NiN块其实就相当于一个小的神经网络(因为它具有卷积层和类似于全连接层的 $1 \times 1$ 卷积层),因此叫网络中的网络。NiN块首先有一个卷积层,然后后跟两个 $1 \times 1$ 的卷积层($1 \times 1$ 的卷积层等价于全连接层)。

3、NiN架构

全局池化层:池化层的高和宽等于输入的高和宽,一个通道得出一个值,用这个值当作对类别的预测。

4、总结

二、代码实现

       NiN的想法是将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。下图说明了VGG和NiN及它们的块之间主要架构差异。NiN块以一个普通卷积层开始,后面是两个 $1 \times 1$ 的卷积层。NiN块第一层的卷积窗口形状通常由用户设置。随后的卷积窗口形状固定为 $1 \times 1$

1、定义NiN卷积块

import torch
from torch import nn
from d2l import torch as d2l

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

2、NiN模型

       最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。NiN使用窗口形状为$11\times 11$$5\times 5$ 和 $3\times 3$ 的卷积层,输出通道数量与AlexNet中的相同。每个NiN块后有一个最大池化层,池化窗口形状为 $3\times 3$,步幅为2。

       NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。相反,NiN使用一个个NiN块,最后一个NiN块的输出通道数等于标签类别的数量。最后放一个全局平均池化层(global average pooling layer),生成一个对数几率(logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),    # 通道数先增加后减少:1->96->256->384->10
    nn.AdaptiveAvgPool2d((1, 1)),   # 注意这里的(1, 1)不是kernel_size,而是output_size
    # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
    nn.Flatten())   # Flatten会把channel、height和width展平成一行

       我们创建一个数据样本来查看每个块的输出形状。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Sequential output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Sequential output shape:	 torch.Size([1, 384, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 384, 5, 5])
Dropout output shape:	 torch.Size([1, 384, 5, 5])
Sequential output shape:	 torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 10, 1, 1])
Flatten output shape:	 torch.Size([1, 10])

3、训练模型

       我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) # 调节图片尺寸为224
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.563, train acc 0.786, test acc 0.790
3087.6 examples/sec on cuda:0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/266009.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式除盲

目录 1.设计模式概述1.1 软件设计模式的产生背景1.2.软件设计模式的概念1.3 学习设计模式的必要性1.4 设计模式分类 2.UML图2.1 类图概述2.2 类图的作用2.3 类图表示法2.3.1 类的表示方式2.3.2 类与类之间关系的表示方式2.3.2.1 关联关系2.3.2.2 聚合关系2.3.2.3 组合关系2.3.2…

驱动开发-1

一、驱动课程大纲 内核模块字符设备驱动中断 二、ARM裸机代码和驱动有什么区别? 1、共同点: 都能够操作硬件 2、不同点: 1)裸机就是用C语言给对应的寄存器里面写值,驱动是按照一定的套路往寄存器里面写值 2&#xff09…

微服务之配置中心与服务跟踪

zookeeper 配置中心 实现的架构图如下所示,采取数据加载到内存方式解决高效获取的问题,借助 zookeeper 的节点监听机制来实现实时感知。 配置中心数据分类 事件调度(kafka) 消息服务和事件的统一调度,常用用 kafka …

vulnhub-Tre(cms渗透)

🐮博主syst1m 带你 acquire knowledge! ✨博客首页——syst1m的博客💘 😘《CTF专栏》超级详细的解析,宝宝级教学让你从蹒跚学步到健步如飞🙈 😎《大数据专栏》大数据从0到秃头👽&…

MATLAB画球和圆柱

1. 画球 修改了一下MATLAB的得到球的坐标的函数&#xff1a; GetSpherePoint function [xx,yy,zz] GetSpherePoint(xCenter,yCenter,zCenter,r,N) % 在[xCenter,yCenter,zCenter]为球心画一个半径为r的球,N表示球有N*N个面&#xff0c;N越大球的面越密集 if nargin < 4 …

Flink面试题与详解

Flink面试题目合集 从牛客网上找到的一些面试题&#xff0c;如果还有其他的&#xff0c;欢迎大家补充。 1、能否详细描述下Apache Flink的架构组件和其工作原理&#xff1f;请介绍一下Flink on YARN部署模式的工作原理。 官网图&#xff1a; 由两个部分组成&#xff0c;JM&am…

单调栈分类、封装和总结

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 通过枚举最小&#xff08;最大&#xff09;值不重复、不遗漏枚举所有子数组 C算法&#xff1a;美丽塔O(n)解法单调栈左右寻找第一个小于maxHeight[i]的left,right&#xff0c;[left,right]直接的高度都是maxHeight[i] 可以…

攻防世界——game 游戏

下载下来是一个exe文件&#xff0c;可以用IDA打开 我们先运行一下 这是属于第二种类型&#xff0c;完成一个操作后给你flag 这种题我更倾向于动调直接得到flag 我们查壳 没有保护壳&#xff0c;直接32打开 进入字符串界面&#xff0c;找到显示的那部分 int __cdecl main_0(…

XSKY星辰天合星海架构荣获 IT168 “2023 年度技术卓越奖”

近日&#xff0c;"2023 年度技术卓越奖"获奖名单公布&#xff0c;XSKY 星辰天合的星海架构&#xff08;XSEA&#xff0c;极速全共享架构&#xff09;获得行业 CIO/CTO 大咖、技术专家及 IT 媒体三方认可&#xff0c;成功入选&#xff01; “技术卓越奖”评选由国内著…

Java核心知识体系8:Java如何保证线程安全性

1 Java内存模型&#xff08;JMM&#xff09; 如何解决并发问题 维度1&#xff1a;使用关键字、属性进行优化JMM本质实际就是&#xff1a;Java 内存模型规范了 JVM 如何提供按需禁用缓存和编译优化的方法。这些方法包括了&#xff1a; volatile、synchronized 和 final 关键字 …

Linux多线程:线程池(单例),读写锁

目录 一、线程池&#xff08;单例模式&#xff09;1.1 makefile1.2 LockGuard.hpp1.3 log.hpp1.4 Task.hpp1.5 Thread.hpp1.6 ThreadPool.hpp1.7 main.cc 二、STL,智能指针和线程安全2.1 STL中的容器是否是线程安全的?2.2 智能指针是否是线程安全的? 三、其他常见的各种锁四、…

Mac OS 13+,Apple Silicon,删除OBS虚拟摄像头(virtual camera),

原文链接: https://www.reddit.com/r/MacOS/comments/142cv OBS为了捕获摄像头视频,将虚拟摄像头插件内置为系统插件了.如下 直接删除没有权限的,要删除他,在mac os 13以后,需要关闭先关闭苹果系统的完整性保护(SIP) Apple 芯片(M1,....)的恢复模式分为两种,回退恢复模式,和…

支持TrustZone®的R7FA4M2AC3CFM、R7FA4M2AD3CFM、R7FA4M2AD3CFP、R7FA4M2AC3CFP高性能32位微控制器

产品简介 RA4M2 32 位微控制器 (MCU) 产品群使用支持 TrustZone 的高性能 Arm Cortex-M33 内核。 与片内的 Secure Crypto Engine (SCE) 配合使用&#xff0c;可实现安全芯片的功能。 RA4M2 采用高效的 40nm 工艺&#xff0c;由灵活配置软件包 (FSP) 这个开放且灵活的生态系统…

计算机网络(5):运输层

这一章应该是整个计算机网络对我们来说最重要的&#xff0c;也是用的最多的一部分。 运输层协议 进程之间的通信 从通信和信息处理的角度看&#xff0c;运输层向它上面的应用层提供通信服务&#xff0c;它属于面向通信部分的最高层&#xff0c;同时也是用户功能中的最低层。…

【MySQL工具】pt-online-schema-change源码分析

通过阅读源码 更加深入了解原理&#xff0c;以及如何进行全量数据同步&#xff0c;如何使用触发器来同步变更期间的原表的数据更改。(&#xff3e;&#xff0d;&#xff3e;)V 目录 源码分析 Get configuration information. Connect to MySQL. Create --plugin. Setup la…

3D数学--矢量

矢量是具有大小和方向的有向线段 矢量大小&#xff08;结果&#xff1a;标量&#xff09; 矢量与标量乘法&#xff08;结果&#xff1a;矢量&#xff09; 矢量加减法&#xff08;结果&#xff1a;矢量&#xff09; 矢量点积&#xff08;结果&#xff1a;标量&#xff09; 1.矢量…

2024年【天津市安全员C证】新版试题及天津市安全员C证模拟考试题库

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 天津市安全员C证新版试题是安全生产模拟考试一点通总题库中生成的一套天津市安全员C证模拟考试题库&#xff0c;安全生产模拟考试一点通上天津市安全员C证作业手机同步练习。2024年【天津市安全员C证】新版试题及天津…

SpringMVC基础知识(持续更新中~)

笔记&#xff1a; https://gitee.com/zhengguangqq/ssm-md/blob/master/ssm%20md%E6%A0%BC%E5%BC%8F%E7%AC%94%E8%AE%B0/%E4%B8%89%E3%80%81SpringMVC.md 细节补充&#xff1a;

Vue 实现响应式布局

实现响应式布局是工作中必不可少 客户需要 若是使用vue element ui 的方式实现 浏览器宽度为760的情况 浏览器宽度为360的情况 手机上的显示的情况 一、对于屏幕尺寸的定义 element UI参照Bootstrap的解决方案提供了五种屏幕大小尺寸&#xff1a;xs、sm、md、lg 和 xl。并对…

CAD制图

CAD制图 二维到三维 文章目录 CAD制图前言一、CAD制图二、机械设计三、二维图纸四、三维图纸总结前言 CAD制图可以提高设计效率和准确性,并方便文档的存档和交流,是现代工程设计中不可或缺的一部分。 一、CAD制图 CAD(Computer-Aided Design)是利用计算机技术辅助进行设计…
最新文章