竞赛保研 基于GRU的 电影评论情感分析 - python 深度学习 情感分类

文章目录

  • 1 前言
    • 1.1 项目介绍
  • 2 情感分类介绍
  • 3 数据集
  • 4 实现
    • 4.1 数据预处理
    • 4.2 构建网络
    • 4.3 训练模型
    • 4.4 模型评估
    • 4.5 模型预测
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于GRU的 电影评论情感分析

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 项目介绍

其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:

朴素贝叶斯或者逻辑回归以及支持向量机都可以解决这个问题。

另外在深度学习中,我们可以用CNN-Text或者RNN以及LSTM等模型最好。

当然在构建网络中也相对简单,相对而言,LSTM就比较复杂了,为了让不同层次的同学们可以接受,学长就用了相对简单的GRU模型。

如果大家想了解LSTM。以后,学长会给大家详细介绍。

2 情感分类介绍

其实情感分析在自然语言处理中,情感分析一般指判断一段文本所表达的情绪状态,属于文本分类问题。一般而言:情绪类别:正面/负面。当然,这就是为什么本人在前面提到情感分析实际上也是二分类问题的原因。

3 数据集

学长本次使用的是非常典型的IMDB数据集。

该数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

查看其数据集的文件夹:这是train和test文件夹。

在这里插入图片描述

接下来就是以train文件夹介绍里面的内容
在这里插入图片描述

然后就是以neg文件夹介绍里面的内容,里面会有若干的text文件:
在这里插入图片描述

4 实现

4.1 数据预处理



    #导入必要的包
    import zipfile
    import os
    import io
    import random
    import json
    import matplotlib.pyplot as plt
    import numpy as np
    import paddle
    import paddle.fluid as fluid
    from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embedding
    from paddle.fluid.dygraph.base import to_variable
    from paddle.fluid.dygraph import GRUUnit
    import paddle.dataset.imdb as imdb


    #加载字典
    def load_vocab():
        vocab = imdb.word_dict()
        return vocab
    #定义数据生成器
    class SentaProcessor(object):
        def __init__(self):
            self.vocab = load_vocab()
    
        def data_generator(self, batch_size, phase='train'):
            if phase == "train":
                return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)
            elif phase == "eval":
                return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)
            else:
                raise ValueError(
                    "Unknown phase, which should be in ['train', 'eval']")



步骤

  1. 首先导入必要的第三方库

  2. 接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。

4.2 构建网络

这次的GRU模型分为以下的几个步骤

  • 定义网络
  • 定义损失函数
  • 定义优化算法

具体实现如下


#定义动态GRU
class DynamicGRU(fluid.dygraph.Layer):
def init(self,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation=‘sigmoid’,
candidate_activation=‘relu’,
h_0=None,
origin_mode=False,
):
super(DynamicGRU, self).init()
self.gru_unit = GRUUnit(
size * 3,
param_attr=param_attr,
bias_attr=bias_attr,
activation=candidate_activation,
gate_activation=gate_activation,
origin_mode=origin_mode)
self.size = size
self.h_0 = h_0
self.is_reverse = is_reverse
def forward(self, inputs):
hidden = self.h_0
res = []
for i in range(inputs.shape[1]):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[ :, i:i+1, :]
input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_)
if self.is_reverse:
res = res[::-1]
res = fluid.layers.concat(res, axis=1)
return res

class GRU(fluid.dygraph.Layer):
    def __init__(self):
        super(GRU, self).__init__()
        self.dict_dim = train_parameters["vocab_size"]
        self.emb_dim = 128
        self.hid_dim = 128
        self.fc_hid_dim = 96
        self.class_dim = 2
        self.batch_size = train_parameters["batch_size"]
        self.seq_len = train_parameters["padding_size"]
        self.embedding = Embedding(
            size=[self.dict_dim + 1, self.emb_dim],
            dtype='float32',
            param_attr=fluid.ParamAttr(learning_rate=30),
            is_sparse=False)
        h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")
        h_0 = to_variable(h_0)
        
        self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)
        self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")
        self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
                                output_dim=self.class_dim,
                                act="softmax")
        self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)
        
    def forward(self, inputs, label=None):
        emb = self.embedding(inputs)
        o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')
        mask_emb = fluid.layers.expand(
            to_variable(o_np_mask), [1, self.hid_dim])
        emb = emb * mask_emb
        emb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])
        fc_1 = self._fc1(emb)
        gru_hidden = self._gru(fc_1)
        gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)
        tanh_1 = fluid.layers.tanh(gru_hidden)
        fc_2 = self._fc2(tanh_1)
        prediction = self._fc_prediction(fc_2)
        
        if label is not None:
            acc = fluid.layers.accuracy(prediction, label=label)
            return prediction, acc
        else:
            return prediction

4.3 训练模型


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor()
        train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"], phase='train')

        model = GRU()
        sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())

        steps = 0
        Iters, total_loss, total_acc = [], [], []
        for eop in range(train_parameters["epoch"]):
            for batch_id, data in enumerate(train_data_generator()):

                steps += 1
                doc = to_variable(
                    np.array([
                        np.pad(x[0][0:train_parameters["padding_size"]], 
                              (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),
                               'constant',
                              constant_values=(train_parameters["vocab_size"]))
                        for x in data
                    ]).astype('int64').reshape(-1))
                label = to_variable(
                    np.array([x[1] for x in data]).astype('int64').reshape(
                        train_parameters["batch_size"], 1))
        
                model.train()
                prediction, acc = model(doc, label)
                loss = fluid.layers.cross_entropy(prediction, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                sgd_optimizer.minimize(avg_loss)
                model.clear_gradients()
 
                if steps % train_parameters["skip_steps"] == 0:
                    Iters.append(steps)
                    total_loss.append(avg_loss.numpy()[0])
                    total_acc.append(acc.numpy()[0])
                    print("step: %d, ave loss: %f, ave acc: %f" %
                         (steps,avg_loss.numpy(),acc.numpy()))

                if steps % train_parameters["save_steps"] == 0:
                    save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)
                    print('save model to: ' + save_path)
                    fluid.dygraph.save_dygraph(model.state_dict(),
                                                   save_path)
    draw_train_process(Iters, total_loss, total_acc)

在这里插入图片描述
在这里插入图片描述

4.4 模型评估

在这里插入图片描述

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。

4.5 模型预测


train_parameters[“batch_size”] = 1

with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):

    sentences = 'this is a great movie'
    data = load_data(sentences)
    print(sentences)
    print(data)
    data_np = np.array(data)
    data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)
    infer_np_doc = to_variable(data_np)

    model_infer = GRU()
    model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")
    model_infer.load_dict(model)
    model_infer.eval()
    result = model_infer(infer_np_doc)
    print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

在这里插入图片描述

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/266195.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IDEA常用快捷键一

一、文本编辑 1、Ctrl X :剪切 剪切选中的文本,若是没有选中,则剪切当前行。 2、CtrlC:复制 复制选中文本,若未选中则复制当前行。 3、CtrlV:粘贴 4、Ctrl Shift V: 从历史中选择粘贴 从历史剪…

Stream 流详细总结

Stream 流详细总结 一、Stream 是什么二、流的创建1、Stream 创建2、Collection 集合创建(最常见的一种)3、Array 数组创建4、文件创建5、函数创建 三、流的操作1、中间操作distinct 去重filter 过滤map 映射flatMap 映射汇总sorted 排序limit 截断skip …

LTE之接口协议

一、接口协议栈 接口是指不同网元之间的信息交互方式。既然是信息交互,就应该使用彼此都能看懂的语言,这就是接口协议。接口协议的架构称为协议栈。根据接口所处位置分为空中接口和地面接口,响应的协议也分为空中接口协议和地面接口协议。空…

mysql复习笔记06(小滴课堂)

mysql数据安全之备份的背景意义 介绍数据备份 mysql数据安全之mysqldump备份实例(跨机器) 一般存在于mysql的bin目录下。中小型企业,数据量不是特别大的时候可以使用这个方式备份。 可以看到备份过来的库了。这是备份单个数据库。 如果想备份…

龙芯loongarch64服务器编译安装tensorflow-io-gcs-filesystem

前言 安装TensorFlow的时候,会出现有些包找不到的情况,直接使用pip命令也无法安装,比如tensorflow-io-gcs-filesystem,安装的时候就会报错: 这个包需要自行编译,官方介绍有限,这里我讲解下 编译 准备 拉取源码:https://github.com/tensorflow/io.git 文章中…

论文写作工具 - 基于Tkinter的AI模型与文档处理

本工具不开源,需要的联系chsengni163.com 论文写作工具 - 基于Tkinter的AI模型与文档处理 概述 这个工具是一个基于Python的Tkinter库创建的图形用户界面应用,旨在帮助用户利用AI模型编写论文并自定义文档格式。通过结合AI技术和文档处理功能&#xf…

java八股 设计模式

企业场景篇-03-设计模式-工厂设计模式-工厂方法模式_哔哩哔哩_bilibili 1.简单工厂模式 新加咖啡类的时候需要在唯一的那个工厂类里加代码,这样就耦合了 2.工厂模式 相对于简单模式的一个工厂生产所有咖啡,这里只定义了一个抽象咖啡工厂,然…

【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

文章目录 前言一、Dijkstra(迪克斯特拉)1.方法:2.代码实现 二、FloydWarshall(弗洛伊德)1.方法2.代码实现 完整源码 前言 最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点…

FPGA设计时序约束十三、Set_Data_Check

目录 一、序言 二、Set Data Check 2.1 基本概念 2.2 设置界面 2.3 命令语法 三、工程示例 3.1 工程代码 3.2 约束设置 3.3 时序报告 四、参考资料 一、序言 通常进行时序分析时,会考虑触发器上时钟信号与数据信号到达的先后关系,从而进行setu…

文字编辑软件,批量给多个文本添加文档内容

在当今信息爆炸的时代,文字编辑工作是很多人需要面对的,而怎么快速的完成编辑工作,则是很多人所思考解决的。现在有一款很好用的软件——首助编辑高手,可以批量对多个文本文档内容进行处理,能帮你在文字编辑的工作上节…

开关电源厚膜集成电路引脚功能

开关电源厚膜集成电路引脚功能 一、 STR51213、STR50213、STR50103 引脚号 引脚功能 1 接地,内接稳压基准电路 2 开关管基极 3 开关管集电极 4 开关管发射极 5 误差比较电压信号输入,兼待机控制 二、 STR3302、STR3202 引脚号 引脚功能 1内部半…

融资项目——swagger2接口分类配置

在一般开发中,各种Controller可能会被分为两种:后台管理员的相关Controller与用户的相关Controller。所以在使用swagger2的时候,我们也希望其分为两个大类。其解决方法如下: Configuration EnableSwagger2 public class Swagger2…

基于docker-compose 安装Sonar并集成gitlab

文章目录 1. 前置条件2. 编写docker-compose-sonar.yml文件3. 集成 gitlab4. Sonar Login with GitLab 1. 前置条件 安装docker-compose 安装docker 创建容器运行的特有网络 创建挂载目录 2. 编写docker-compose-sonar.yml文件 version: "3" services:sonar-postgre…

DFS与BFS算法总结

知识概览 DFS、BFS都可以对整个问题空间进行搜索,搜索的结构都是像一棵树。DFS会尽可能往深搜,当搜索到叶节点时就会回溯。而BFS每一次只会扩展一层。 DFS与BFS的区别: 搜索方式数据结构空间复杂度性质DFS栈O(h),其中h为搜索空间…

Epson打印机连接wifi

环境 Epson L3153 打印机联通无线光猫 背景 最近家里的联通宽带不太稳定,经常断网。今天打了联通客服电话,师傅上门来,说可能是光猫用的时间太长了,换了一个新的联通光猫,问题解决。 wifi的名称是 CU_Y3ft 和 CU_Y3…

ARM 点灯

.text .global _start _start: led1设置GPIOE时钟使能 RCC_MP_AHB4ENSETR[4]->1 0X50000A28LDR R0,0X50000A28 指定寄存器地址LDR R1,[R0] 将寄存器数值取出来放在R1中ORR R1,R1,#(0x1<<4) 将第4位设置为1STR R1,[R0] 将修改后的值写回去设置PE10为输出 GPIOE…

RocketMQ事务消息实现分布式事务

文章目录 简介实现原理实现逻辑 简介 RocketMQ事务消息 RocketMQ在4.3.0版中支持分布式事务消息&#xff0c;这里RocketMQ的事务消息是采用2PC(两段式协议) 补偿机制&#xff08;消息回查&#xff09;的分布式事务功能。提供消息发送与业务落库的一致性。 RocketMQ事务消息&am…

强化学习(五)-Deterministic Policy Gradient (DPG) 算法及公式推导

针对连续动作空间&#xff0c;策略函数没法预测出每个动作选择的概率。因此使用确定性策略梯度方法。 0 概览 1 actor输出确定动作2 模型目标&#xff1a; actor目标&#xff1a;使critic值最大 critic目标&#xff1a; 使TD error最大3 改进&#xff1a; 使用两个target 网络…

Redis缓存数据一致性

实际业务中常使用Redis缓存来提升读写效率&#xff0c;减少存储层的压力。因为数据在缓存和DB中各存储一份&#xff0c;所以会出现数据一致性的问题。总体来说导致数据不一致的原因主要有两个。请求并发和操作非原子。 请求并发是指同时可能有多个读写请求同时请求Cache或者DB&…

【C++】bind绑定包装器全解(代码演示,例题演示)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的《Linux》…
最新文章