助力打造清洁环境,基于美团最新YOLOv6-4.0开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统

公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题,公共环境下垃圾投放点都会有固定的值班时间,但是考虑到实际扔垃圾的无规律性,往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题,有些容易扩散的垃圾比如:碎纸屑、泡沫粒等等,一旦遇上大风天气往往就会被吹得遍地都是给垃圾清理工作带来负担。

本文的主要目的及时想要探索分析通过接入社区实时视频流数据来对公共环境下的垃圾投放点进行自动化的智能分析计算,当探测到异常问题比如:随意堆放垃圾、垃圾桶溢出等问题的时候结合一些人工业务预设的规则来自动通过短信等形式推送事件给相关的工作人员来进行及时的处置这一方案的可行性,博文主要是侧重对检测模型的开发实现,业务规则需要到具体的项目中去细化,这块就不作为文本的实践内容。

在前文中,我们已经陆续开发了相关的实践项目,感兴趣的话可以自行移步阅读即可:

《助力打造清洁环境,基于YOLOv3开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv4开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv5全系列模型【n/s/m/l/x】开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

本文紧接前文系列,主要是想要基于YOLOv6这一经典的模型来开发实践性质的项目,首先看下实例效果:

Yolov6是美团开发的轻量级检测算法,截至目前为止该算法已经迭代到了4.0版本,每一个版本都包含了当时最优秀的检测技巧和最最先进的技术,YOLOv6的Backbone不再使用Cspdarknet,而是转为比Rep更高效的EfficientRep;它的Neck也是基于Rep和PAN搭建了Rep-PAN;而Head则和YOLOX一样,进行了解耦,并且加入了更为高效的结构。YOLOv6也是沿用anchor-free的方式,抛弃了以前基于anchor的方法。除了模型的结构之外,它的数据增强和YOLOv5的保持一致;而标签分配上则是和YOLOX一样,采用了simOTA;并且引入了新的边框回归损失:SIOU。
YOLOv5和YOLOX都是采用多分支的残差结构CSPNet,但是这种结构对于硬件来说并不是很友好。所以为了更加适应GPU设备,在backbone上就引入了ReVGG的结构,并且基于硬件又进行了改良,提出了效率更高的EfficientRep。RepVGG为每一个3×3的卷积添加平行了一个1x1的卷积分支和恒等映射的分支。这种结构就构成了构成一个RepVGG Block。和ResNet不同的是,RepVGG是每一层都添加这种结构,而ResNet是每隔两层或者三层才添加。RepVGG介绍称,通过融合而成的3x3卷积结构,对计算密集型的硬件设备很友好。

简单看下实例数据情况:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)

# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False

# Classes
nc: 3  # number of classes

# class names
names: ['trash_over', 'garbage', 'trash_no_full']


默认我先选择的是最为轻量级的yolov6n系列的模型,基于finetune来进行模型的开发:

# YOLOv6s model
model = dict(
    type='YOLOv6n',
    pretrained='weights/yolov6n.pt',
    depth_multiple=0.33,
    width_multiple=0.25,
    backbone=dict(
        type='EfficientRep',
        num_repeats=[1, 6, 12, 18, 6],
        out_channels=[64, 128, 256, 512, 1024],
        fuse_P2=True,
        cspsppf=True,
        ),
    neck=dict(
        type='RepBiFPANNeck',
        num_repeats=[12, 12, 12, 12],
        out_channels=[256, 128, 128, 256, 256, 512],
        ),
    head=dict(
        type='EffiDeHead',
        in_channels=[128, 256, 512],
        num_layers=3,
        begin_indices=24,
        anchors=3,
        anchors_init=[[10,13, 19,19, 33,23],
                      [30,61, 59,59, 59,119],
                      [116,90, 185,185, 373,326]],
        out_indices=[17, 20, 23],
        strides=[8, 16, 32],
        atss_warmup_epoch=0,
        iou_type='siou',
        use_dfl=False, # set to True if you want to further train with distillation
        reg_max=0, # set to 16 if you want to further train with distillation
        distill_weight={
            'class': 1.0,
            'dfl': 1.0,
        },
    )
)

solver = dict(
    optim='SGD',
    lr_scheduler='Cosine',
    lr0=0.0032,
    lrf=0.12,
    momentum=0.843,
    weight_decay=0.00036,
    warmup_epochs=2.0,
    warmup_momentum=0.5,
    warmup_bias_lr=0.05
)

data_aug = dict(
    hsv_h=0.0138,
    hsv_s=0.664,
    hsv_v=0.464,
    degrees=0.373,
    translate=0.245,
    scale=0.898,
    shear=0.602,
    flipud=0.00856,
    fliplr=0.5,
    mosaic=1.0,
    mixup=0.243,
)

当然了也可以使用其他几个系列的模型,不同系列模型训练命令如下:

#yolov6n
python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2


#yolov6s
python3 tools/train.py --batch-size 16 --conf configs/yolov6s_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6s --epochs 100 --workers 2


#yolov6m
python3 tools/train.py --batch-size 16 --conf configs/yolov6m_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6m --epochs 100 --workers 2


#yolov6l
python3 tools/train.py --batch-size 8 --conf configs/yolov6l_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6l --epochs 100 --workers 2

根据自己的需要选择使用合适的模型即可。

终端执行如下命令即可启动训练:

python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2

训练日志输出如下:

训练完成输出如下所示:

Inferencing model in train datasets.: 100%|?????| 50/50 [00:20<00:00,  2.44it/s]

Evaluating speed.

Evaluating mAP by pycocotools.
Saving runs/train/yolov6n/predictions.json...
Results saved to runs/train/yolov6n
Epoch: 99 | mAP@0.5: 0.8504197493162378 | mAP@0.50:0.95: 0.6347577838061667

Training completed in 5.716 hours.
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.57s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=5.45s).
Accumulating evaluation results...
DONE (t=0.92s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.635
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.850
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.707
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.183
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.401
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.670
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.420
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.750
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.775
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.489
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.600
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.800

感觉整体yolov6系列的模型使用下来最明显的体验就是对于显存的占用还是比较大的,同等量级的模型训练经常会出现OOM的警告信息。相较于yolov5的n系列模型yolov8的n系列模型,yolov6的n系列模型显然会消耗掉更大的显存资源,虽然官方项目兼容了CPU计算,当显存不足的时候会自动使用CPU来完成计算但是本质还是模型自身资源消耗太大的原因,另外一点就是yolov6的模型训练完成后没有像yolov5、yolov8之类的详细的指标评测信息,只有孤零零的权重文件,不利于学术性质的项目使用,除此之外yolov6模型训练会产生一个很大的记录日志的文件,如下:

文件实在是太大了,这一点我觉得很理解不了,如果有懂行的欢迎来指导一下。

可能这些不足之处也是导致yolov6始终不温不火的原因吧。

离线推理实例如下所示:

在实际应用开发的时候可以考虑如何更好地基于目标检测模型的检测计算结果来产生业务上的有效事件,这里大都是需要结合业务需求来设定合理有效的规则和预警逻辑的,这里暂时不是本文的重点,感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/271184.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用travelbook架设自己的实时位置共享服务

travelbook 是一款开源的安卓APP&#xff0c;它能以低功耗提供实时位置共享&#xff0c;它包含功能如下&#xff1a; 好友之间分享实时位置&#xff1b;记录行程轨迹&#xff1b;标记收藏地点&#xff1b; 这款软件的主要解决的问题包括&#xff1a; 场景1&#xff1a;查看老…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

安防视频云平台/可视化监控云平台EasyCVR如何快速定位占用大量存储空间的文件?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

【Vue2+3入门到实战】(4)Vue基础之指令修饰符 、v-bind对样式增强的操作、v-model应用于其他表单元素 详细示例

目录 一、今日学习目标1.指令补充 二、指令修饰符1.什么是指令修饰符&#xff1f;2.按键修饰符3.v-model修饰符4.事件修饰符 三、v-bind对样式控制的增强-操作class1.语法&#xff1a;2.对象语法3.数组语法4.代码练习 四、京东秒杀-tab栏切换导航高亮1.需求&#xff1a;2.准备代…

小白的实验室服务器深度学习环境配置指南

安装nvidia 本文在ubuntu server 22.04上实验成功&#xff0c;其他版本仅供参考 注意&#xff0c;本文仅适用于ubuntu server&#xff0c;不需要图形界面&#xff0c;没有对图形界面进行特殊考虑和验证&#xff01;依赖图形操作界面的读者慎用 查看是否安装了gcc gcc -v若没…

如何快速删除pdf周围的空白

问题&#xff1a;写论文往往需要pdf格式的图片&#xff0c;但pdf往往四周存在大量空白需要手动截图很麻烦 解决&#xff1a; 打开命令行输入&#xff1a;pdfcrop 图片名.pdf

【Mysql】InnoDB统计数据的收集(十三)

我们前边在计算查询成本的时候会用到一些统计数据&#xff0c;比如通过 SHOW TABLE STATUS 可以看到关于表的统计数据&#xff0c;通过 SHOW INDEX 可以看到关于某个索引的统计数据&#xff0c;那么这些统计数据是怎么来的呢&#xff1f;本章节将分享 InnoDB 存储引擎的统计数据…

深圳锐科达SIP矿用电话模块SV-2801VP

深圳锐科达SIP矿用电话模块SV-2801VP 一、简介 SV-2800VP系列模块是我司设计研发的一款用于井下的矿用IP音频传输模块&#xff0c;可用此模块打造一套低延迟、高效率、高灵活和多扩展的IP矿用广播对讲系统&#xff0c;亦可对传统煤矿电话系统加装此模块&#xff0c;进行智能化…

在Vue3中使用vue-qrcode库实现二维码生成

本文主要介绍在Vue3中使用qrcode库实现二维码生成的方法。 目录 一、基础用法实现vue-qrcode库的参数介绍 在Vue3中实现二维码生成需要使用第三方库来处理生成二维码的逻辑。常用的库有 qrcode和 vue-qrcode。 一、基础用法实现 在Vue3中使用vue-qrcode库实现二维码生成的方…

记录一次云主机故障排查

云上某云主机&#xff0c;在安全组test-a中&#xff0c;同一安全组下还有另外两台主机。 从本地可以ping 通另外两台主机的公网地址。但是不能ping通这个主机的公网地址。 与是重启主机&#xff0c;发现问题依然存在。依然是不能ping 通&#xff0c;主机上部署的业务也不能访…

LabVIEW在齿轮箱故障诊断中的应用

LabVIEW在齿轮箱故障诊断中的应用 在现代机械工业中&#xff0c;齿轮箱作为重要的传动设备&#xff0c;其性能稳定性对整体机械系统的运行至关重要。故障的及时诊断和处理不仅保障了设备的稳定运行&#xff0c;还减少了维护成本。利用LabVIEW强大数据处理和仿真能力&#xff0…

新版IDEA中Git的使用(二)

说明&#xff1a;前面介绍了在新版IDEA中Git的基本操作&#xff0c;本文介绍关于分支合并、拉取等操作&#xff1b; 例如&#xff0c;现在有一个项目&#xff0c;分支如下&#xff1a; main&#xff1a;主分支&#xff1b; dev&#xff1a;开发分支&#xff1b; test&#x…

Springboot整合MVC进阶篇

一、概述 1.1SpringBoot整合SpringMVC配置 SpringBoot对SpringMVC的配置主要包括以下几个方面&#xff1a; 自动配置&#xff1a;SpringBoot会自动配置一个嵌入式的Servlet容器&#xff08;如Tomcat&#xff09;&#xff0c;并为我们提供默认的SpringMVC配置。这样我们无需手动…

【Java、Python】获取电脑当前网络IP进行位置获取(附源码)

我相信看到这篇博客的时候心里肯定是想解决自己的一个问题的&#xff0c;而这篇博客我就以简单快速的方式解决这些烦恼&#xff01; 一、获取当前IP 在Java中自带了一些自己的流对象来获取当前的IP地址&#xff0c;不多说我们直接上代码。 //获取当前网络ip地址 ipAddress Ine…

在k8s中将gitlab-runner的运行pod调度到指定节点

本篇和前面的 基于helm的方式在k8s集群中部署gitlab 具有很强的关联性&#xff0c;因此如果有不明白的地方可以查看往期分享&#xff1a; 基于helm的方式在k8s集群中部署gitlab - 部署基于helm的方式在k8s集群中部署gitlab - 备份恢复基于helm的方式在k8s集群中部署gitlab - 升…

论文阅读——X-Decoder

Generalized Decoding for Pixel, Image, and Language Towards a Generalized Multi-Modal Foundation Model 1、概述 X-Decoder没有为视觉和VL任务开发统一的接口&#xff0c;而是建立了一个通用的解码范式&#xff0c;该范式可以通过采用共同的&#xff08;例如语义&#…

实战:朴素贝叶斯文本分类器搭建与性能评估

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

生成超清分辨率视频,南洋理工开源Upscale-A-Video

大模型在生成高质量图像方面表现出色,但在生成视频任务中&#xff0c;经常会面临视频不连贯、图像模糊、掉帧等问题。 这主要是因为生成式抽样过程中的随机性,会在视频序列中引入无法预测的帧跳动。同时现有方法仅考虑了局部视频片段的时空一致性,无法保证整个长视频的整体连贯…

基于电商场景的高并发RocketMQ实战-Broker写入读取流程性能优化总结、Broker基于Pull模式的主从复制原理

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 【11来了】文章导读地址&#xff1a;点击查看文章导读&#xff01; &#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f3…

关于OpenCV中 CV_Assert() 的使用引起程序中止/崩溃问题

CV_Assert() 的作用是&#xff1a;若括号中的表达式值为 false &#xff0c;则返回一个错误信息&#xff0c;并终止程序执行。 但是 CV_Assert() 与 assert 不同&#xff0c;CV_Assert() 会通过异常抛出&#xff0c;所以如果使用 CV_Assert()&#xff0c;可以通过捕获异常而不是…
最新文章