k8s二进制最终部署(网络 负载均衡和master高可用)

k8s中的通信模式

1、pod内部之间容器与容器之间的通信,在同一个pod 中的容器共享资源和网络,使用同一个网络命名空间,可以直接通信的

2、同一个node节点之内,不同pod之间的通信,每个pod都有一个全局的真实的IP地址,同一个node直接的不同pod可以直接使用对方pod的IP地址通信

pod1和pod2是通过docker0的网桥来进行通信

3、不同node节点的上的pod之间如何进行通信?

cni的插件

cni是一个标准接口,用于容器运行时调用网络插件,配置容器网络,负责设置容器的网络命名空间,IP地址,路由等等参数

flannel插件:功能就是让集群之中不同节点的docker容器具有全集群唯一的虚拟IP地址

overlay网络,在底层物理网络的基础之上,创建一个逻辑的网络层,二层和三层的集合,二层是物理网络,三层是逻辑上的网络层,overlay网络也是一种网络虚拟化的技术

flannel支持的数据转发方式

1、UDP模式,默认模式,应用转发,配置简单,但是性能最差

2、vlan,基于内核转发,也是最常用的网络类型(一般都是小集群)

3、host-gw(性能最好,但是配置麻烦)

UDP:基于应用转发,fannel提供路由表,flannel封装数据包,解封装

node都会有一个flannel的虚拟网卡

vxlan:使用的就是overlay的虚拟隧道通信技术,二层+三层的模式

upd基于应用层,用户态

vxlan:flannel提供路由表,内核封装解封装

在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

flannel:每个发向容器的数据包进行封装,vxlan通过vtep打包数据,由内核封装成数据包----转发目标的node节点---到了目标node节点,还有一个解封装的过程,再发送目标pod,性能是有一定影响的

Calico插件

calico:采用直接路由的方式,BGP路由,不需要修改报文,统一直接通过路由表转发,路由表会相当复杂,运行维护的要求比较高

BGP模式的特点:交换路由信息的外部网关协议,可以连接不同的node节点,node节点可能不是一个网段,BGP实现可靠的,最佳的,而且是动态的路由选择,自动识别相邻的路由设备

calico不使用overlay,也不需要交换,直接通过虚拟路由实现,每台虚拟路由都通过BGP

核心组件

felix:也是运行在主机中的一个个pod,一个进程,k8s daemont set 会在每个node节点部署相同的pod,后台的运行方式

负载宿主机上插入路由规则,维护calico需要的网络设备,网络接口管理,监听,路由等等

BGP client:bird BGP的客户端,专门负责在集群中分发在集群中分发路由规则的信息,每一个节点都会有一个BGP client

BGP协议广播方式通知其他节点的,分发路由的规则,实现网络互通

etcd 报讯路由信息,负责网络元数据的一致性,保证网络状态的一致和准确

calico的工作原理

路由表来维护每个pod之间的通信,创建好pod之后,添加一个设备cali veth pair设备

虚拟网卡:veth pair 是一对设备,虚拟的以太网设备

一头连接在容器的网络命名空间eth0

另一头连接宿主机的网络命名空间 cali

ip地址fenpei:veth pair连接容器的部分给容器分配一个IP地址,这个IP地址是唯一标识,宿主机也会被veth pair分配一个calico网络的内部IP地址,和其他节点上的容器进行通信

veth设备,容器发出的IP地址通过veth pair设备到宿主机,宿主机根据路由规则的下一跳,发送到网关(目标宿主机)

数据包到达目标宿主机,veth pair设备,目标宿主机噎死根据路由规则,下一跳地址,转发到目标容器

ipip模式:会生成一个tunnel,数据包都在tunnel内部打包,封装:宿主机ip 容器内部的IP地址

部署calico
在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16
  
kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.233.93:/opt/
scp kubelet.sh proxy.sh root@192.168.233.94:/opt/
scp -r /opt/cni root@192.168.233.93:/opt/
scp -r /opt/cni root@192.168.233.94:/opt/
//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.233.94

//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.233.94

#查看群集中的节点状态
kubectl get nodes
coredns

可以集群当中的service资源创建一个域名和ip进行对应解析的关系

service是对外提供访问的地址,现在我们加入DNS机制之后,可以直接访问访问服务名,

部署coreDNS
在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous


kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

exit
部署msater02
从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@20.0.0.71:/opt/
scp -r /opt/kubernetes/ root@20.0.0.71:/opt
scp -r /root/.kube root@20.0.0.71:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@20.0.0.71:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver

KUBE_APISERVER_OPTS="--logtostderr=false  \
--v=2 \
--log-dir=/opt/kubernetes/logs \
--etcd-servers=https://20.0.0.70:2379,https://20.0.0.72:2379,https://20.0.0.73:2379 \
--bind-address=20.0.0.71 \
--secure-port=6443 \
--advertise-address=20.0.0.71 \
--allow-privileged=true \
--service-cluster-ip-range=10.0.0.0/24 \
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \
--authorization-mode=RBAC,Node \
--enable-bootstrap-token-auth=true \
--token-auth-file=/opt/kubernetes/cfg/token.csv \
--service-node-port-range=30000-50000 \
--kubelet-client-certificate=/opt/kubernetes/ssl/apiserver.pem \
--kubelet-client-key=/opt/kubernetes/ssl/apiserver-key.pem \
--tls-cert-file=/opt/kubernetes/ssl/apiserver.pem  \
--tls-private-key-file=/opt/kubernetes/ssl/apiserver-key.pem \
--client-ca-file=/opt/kubernetes/ssl/ca.pem \
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \
--service-account-issuer=api \
--service-account-signing-key-file=/opt/kubernetes/ssl/apiserver-key.pem \
--etcd-cafile=/opt/etcd/ssl/ca.pem \
--etcd-certfile=/opt/etcd/ssl/server.pem \
--etcd-keyfile=/opt/etcd/ssl/server-key.pem \
--requestheader-client-ca-file=/opt/kubernetes/ssl/ca.pem \
--proxy-client-cert-file=/opt/kubernetes/ssl/apiserver.pem \
--proxy-client-key-file=/opt/kubernetes/ssl/apiserver-key.pem \
--requestheader-allowed-names=kubernetes \
--requestheader-extra-headers-prefix=X-Remote-Extra- \
--requestheader-group-headers=X-Remote-Group \
--requestheader-username-headers=X-Remote-User \
--enable-aggregator-routing=true \
--audit-log-maxage=30 \
--audit-log-maxbackup=3 \
--audit-log-maxsize=100 \
--audit-log-path=/opt/kubernetes/logs/k8s-audit.log"

......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名

//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,
而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来
负载均衡部署
配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
#日志记录格式
#$remote_addr: 客户端的 IP 地址。
#$upstream_addr: 上游服务器的地址。
#[$time_local]: 访问时间,使用本地时间。
#$status: HTTP 响应状态码。
#$upstream_bytes_sent: 从上游服务器发送到客户端的字节数。

        access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 20.0.0.70:6443;
        server 20.0.0.71:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER
   vrrp_skip_check_adv_addr
   #vrrp_strict
   vrrp_garp_interval 0
   vrrp_gna_interval 0
}

vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"
    interval 5
}
vrrp_instance VI_1 {
    state MASTER
    interface ens33
    virtual_router_id 51
    priority 100
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        20.0.0.100/24
    }
      track_script {
        check_nginx
    }
}

从
vim /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_BACKUP
   vrrp_skip_check_adv_addr
   #vrrp_strict
   vrrp_garp_interval 0
   vrrp_gna_interval 0
}

vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"
    interval 5
}
vrrp_instance VI_1 {
    state BACKUP
    interface ens33
    virtual_router_id 51
    priority 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        20.0.0.100/24
    }
      track_script {
        check_nginx
    }
}

创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh

#!/bin/bash                                                        
/usr/bin/curl -I http://localhost &>/dev/null    
if [ $? -ne 0 ];then                                            
#    /etc/init.d/keepalived stop
    systemctl stop keepalived
fi 


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip addr				#查看VIP是否生成

修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.233.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.233.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.233.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service
在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx

tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      4141/nginx: master  
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      4141/nginx: master  
tcp        0      0 20.0.0.74:43860         20.0.0.71:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47114         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:43848         20.0.0.71:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50436         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50444         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50474         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:43870         20.0.0.71:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:52370         20.0.0.70:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50446         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50420         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47112         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:43842         20.0.0.71:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50438         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47090         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.72:50448         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:43838         20.0.0.71:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:43862         20.0.0.71:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:52372         20.0.0.70:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:52380         20.0.0.70:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:43852         20.0.0.71:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:52394         20.0.0.70:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47128         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47116         ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:52358         20.0.0.70:6443          ESTABLISHED 4143/nginx: worker  
tcp        0      0 20.0.0.74:52384         20.0.0.70:6443          ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47108         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.100:6443         20.0.0.73:47106         ESTABLISHED 4142/nginx: worker  
tcp        0      0 20.0.0.74:52362         20.0.0.70:6443          ESTABLISHED 4142/nginx: worker  
 部署 Dashboard 
在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system

kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin


#获取token值
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

使用输出的token登录Dashboard

https://20.0.0.72:30001/#/login

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/274576.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络——传输层(五)

前言&#xff1a; 最重要的网络层我们已经学习完了&#xff0c;下面让我们再往上一层&#xff0c;对网络层的上一层传输层进行一个学习与了解&#xff0c;学习网络层的基本概念和网络层中的TCP协议和UDP协议 目录 ​编辑一、传输层的概述&#xff1a; 1.传输层&#xff1a; …

使用Visual Studio 2022 winform项目打包成安装程序.exe

winform项目打包 1.安装扩展插件 Microsoft Visual Studio Installer Projects 20222.在解决方案上新建一个setup project 项目3.新建成功如下图&#xff0c;之后添加你的winform程序生成之后的debug下的文件4.在Application Folder上点击右键->Add->项目输出->主输出…

【稳定检索|投稿优惠】2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024)

2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024) 2024 International Conference on Green Energy and Grid Power Systems(ICGEGPS) 一、【会议简介】 2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024)将在宜宾盛大召开。本次会议将聚焦绿色能源与电网电力系统的最新…

javaEE -19(9000 字 JavaScript入门 - 4)

一&#xff1a; jQuery jQuery是一个快速、小巧且功能丰富的JavaScript库。它旨在简化HTML文档遍历、事件处理、动画效果以及与后端服务器的交互等操作。通过使用jQuery&#xff0c;开发者可以以更简洁、更高效的方式来编写JavaScript代码。 jQuery提供了许多易于使用的方法和…

构建安全防线:SDLC中的供应链攻击防范最佳实践与Log360解决方案

在过去的12个月里&#xff0c;有10家公司发现了软件供应链风险。供应链中依赖关系的增加扩大了对手的攻击面。这也导致威胁行为者将注意力从仅影响最终用户的下游链转移到上游链&#xff0c;影响供应商、客户和最终用户。因此&#xff0c;让我们立即讨论如何使你的SOC团队在产品…

多输入多输出 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多输入多输出预测

多输入多输出 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多输入多输出预测 目录 多输入多输出 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多输入多输出预测预测效果基本介绍模型背景程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多输入…

CentOS 5/6/7 基于开源项目制作openssh 9.6p1 rpm包—— 筑梦之路

背景介绍 开源项目地址&#xff1a;https://github.com/boypt/openssh-rpms.git 该项目主要支持了centos 5 、6、7版本&#xff0c;针对使用了比较老的操作系统进行openssh安全加固&#xff0c;还是不错的项目&#xff0c;使用简单、一件制作&#xff0c;欢迎大家去支持作者。…

泰迪智能科技“供需对接就业育人项目”介绍

为帮助用人单位培养和招聘更多实用型、复合型和紧缺型人才,推动高校人才培养与就业有机联动、人才供需有效对接促进高校毕业生更加充分更高质量就业&#xff0c;经广东泰迪智能科技股份有限公司申报、全国高校毕业生就业创业指导委员会专家组审核&#xff0c;泰迪智能科技“供需…

案例189:基于微信小程序的高校教务管理系统设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

【操作系统】探究驱动奥秘:驱动程序设计的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;Linux专栏&#xff1a;《探秘Linux | 操作系统解密》⏰诗赋清音&#xff1a;月悬苍穹泛清辉&#xff0c;梦随星河徜徉辉。情牵天际云千层&#xff0c;志立乘风意自飞。 目录 &…

【kubernetes】集群网络(一):基础篇

Flannel 1 路由表 & arp & fdb 1.1 路由表 任何网络设备都需要路由表&#xff0c;路由表用来决定&#xff0c;当收到数据包时&#xff0c;该向哪里进行转发。路由表项通常会包含以下几个字段&#xff1a; Destination&#xff1a;目的地Gateway&#xff1a;网关Mas…

opencv和gdal的读写图片波段顺序问题

最近处理遥感影像总是不时听到 图片的波段错了&#xff0c;一开始不明就里&#xff0c;都是图片怎么就判断错了。 1、图像RGB波段顺序判断 后面和大家交流&#xff0c;基本上知道了一个判断标准。 一般来说&#xff0c;进入人眼的自然画面在计算机视觉中一般是rgb波段顺序表示…

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点&#xff1a;K-means的局限性&#xff1a;解决方案&#xff1a; 高斯混合模型&#xff08;Gaussian Mixture Models&#xff0c;GMM&#xff09;多维高斯分布的概率密度函数&#xff1a;高斯混合模型&#xff…

React onClick 事件阻止冒泡

在 React 中&#xff0c;你可以通过使用 onClick 事件来处理点击事件&#xff0c;并且可以通过在事件处理函数中调用 stopPropagation() 方法来阻止事件冒泡。本文将为你提供 类组件 和 函数式组件 两种示例。 一、类组件示例 import React from react;class MyComponent exte…

C++ //例13.14 将一批数据以二进制形式存放在磁盘文件中。例13.15 将刚才以二进制形式存放在磁盘文件中的数据读入内存并在显示器上显示。

C程序设计 &#xff08;第三版&#xff09; 谭浩强 例13.14 例13.15 例13.14 将一批数据以二进制形式存放在磁盘文件中。 例13.15 将刚才以二进制形式存放在磁盘文件中的数据读入内存并在显示器上显示。 IDE工具&#xff1a;VS2010 Note: 使用不同的IDE工具可能有部分差异。…

透彻掌握GIT基础使用

网址 https://learngitbranching.js.org/?localezh_CN 清屏 clear重新开始reset

秋招复习篇之代码规范

目录 前言 1、变量命名 2、代码空格 1&#xff09;操作符左右一定有空格&#xff0c; 2&#xff09;分隔符&#xff08;, 和;&#xff09;前一位没有空格&#xff0c;后一位保持空格&#xff0c;例如&#xff1a; 3&#xff09;大括号和函数保持同一行&#xff0c;并有一个空格…

Java 基础学习(十九)网络编程、反射

1 Socket编程 1.1 Socket编程概述 1.1.1 Socket简介 在网络编程中&#xff0c;Socket&#xff08;套接字&#xff09;是一种抽象概念&#xff0c;它用于在不同计算机之间进行通信。Socket可以看作是一种通信的端点&#xff0c;可以通过Socket与其他计算机上的程序进行数据传…

vue实现H5拖拽可视化编辑器

一款专注可视化平台工具&#xff0c;功能强大&#xff0c;高可扩展的HTML5可视化编辑器&#xff0c;致力于提供一套简单易用、高效创新、无限可能的解决方案。技术栈采用vue和typescript开发, 专注研发创新工具。 <template><div:style"style":class"…

数据分析之词云图绘制

试验任务概述&#xff1a;如下为所给CSDN博客信息表&#xff0c;分别汇总了ai, algo, big-data, blockchain, hardware, math, miniprog等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计&#xff0c;绘制词频统计图&#xff0c;并根据词频统计的结果绘制词云图。…
最新文章