记一次JSF异步调用引起的接口可用率降低 | 京东云技术团队

前言

本文记录了由于JSF异步调用超时引起的接口可用率降低问题的排查过程,主要介绍了排查思路和JSF异步调用的流程,希望可以帮助大家了解JSF的异步调用原理以及提供一些问题排查思路。本文分析的JSF源码是基于JSF 1,7.5-HOTFIX-T6版本。

起因

问题背景

1.广告投放系统是典型的I/O密集型(I/O Bound)服务,系统中某些接口单次操作可能依赖十几个外部接口,导致接口耗时较长,严重影响用户体验,因此需要将这些外部调用切换为异步模式,通过并发的模式降低整体耗时,提高接口的响应速度。

2.在同步调用的场景下,接口耗时长、性能差,接口响应时间长。这时为了缩短接口的响应时间,一般会使用线程池的方式并行获取数据,但是如果使用线程池来做,不同业务需要不同的线程池,最后会导致难以维护,随着CPU调度线程数的增加,会导致更严重的资源争用,宝贵的CPU资源被损耗在上下文切换上,而且线程本身也会占用系统资源,且不能无限增加。

3.通过阅读JSF的文档发现JSF是支持异步调用模式的,既然中间件已经支持这个功能,所以我们就采用了JSF提供的异步调用模式,目前JSF支持三种异步调用方式,分别是ResponseFuture方式、CompletableFuture方式和定义返回值为 CompletableFuture 的接口签名方式。

(1)RpcContext中获取ResponseFuture方式

该方式需要先将Consumer端的async属性设置为true,代表开启异步调用,然后在调用Provider的地方使用RpcContext.getContext().getFuture()方法获取一个ResponseFuture,拿到Future以后就可以使用get方法去阻塞等待返回,但是这种方式已经不推荐使用了,因为第二种CompletableFuture的模式更加强大。

代码示例:

asyncHelloService.sayHello("The ResponseFuture One");
ResponseFuture<Object> future1 = RpcContext.getContext().getFuture();
asyncHelloService.sayNoting("The ResponseFuture Two");
ResponseFuture<Object> future2 = RpcContext.getContext().getFuture();
try {
     future1.get();
     future2.get();
} catch (Throwable e) {
    LOGGER.error("catch " + e.getClass().getCanonicalName() + " " + e.getMessage(), e);
}

(2)RpcContext中获取CompletableFuture方式(1.7.5及以上版本支持)

该方式需要先将Consumer端的async属性设置为true,代表开启异步调用,然后在调用Provider的地方使用RpcContext.getContext().getCompletableFuture()方法获取到一个CompletableFuture进行后续操作。CompletableFuture对Future进行了扩展,可以通过设置回调的方式处理计算结果,支持组合操作,也支持进一步的编排,一定程度解决了回调地狱的问题。

代码示例:

asyncHelloService.sayHello("The CompletableFuture One");
CompletableFuture<String> cf1 = RpcContext.getContext().getCompletableFuture();
asyncHelloService.sayNoting("The CompletableFuture Two");
CompletableFuture<String> cf2 = RpcContext.getContext().getCompletableFuture();

CompletableFuture<String> cf3 = RpcContext.getContext().asyncCall(() -> {
    asyncHelloService.sayHello("The CompletableFuture Three");
});
try {
    cf1.get();
    cf2.get();
    cf3.get();
} catch (Throwable e) {
    LOGGER.error("catch " + e.getClass().getCanonicalName() + " " + e.getMessage(), e);
}

(3)使用 CompletableFuture 签名的接口(1.7.5及以上版本支持)

这种模式需要改造代码,需要服务的提供者事先定义方法的返回值签名为CompletableFuture,这种调用端无需配置即可使用异步。

代码示例:

CompletableFuture<String> cf4 = asyncHelloService.sayHelloAsync("The CompletableFuture Fore");
cf4.whenComplete((res, err) -> {
    if (err != null) {
        LOGGER.error("interface async cf4 now complete error " + err.getClass().getCanonicalName() + " " + err.getMessage(), err);
    } else {
        LOGGER.info("interface async cf4 now complete : {}", res);
    }
});
CompletableFuture<Void> cf5 = asyncHelloService.sayNotingAsync("The CompletableFuture Five");

try {
    LOGGER.info("interface async cf1 now is : {}", cf4.get());
    LOGGER.info("interface async cf2 now is : {}", cf5.get());
} catch (Throwable e) {
    LOGGER.error("catch " + e.getClass().getCanonicalName() + " " + e.getMessage(), e);
}

通过对已上三种异步调用模式的分析,第三种需要提供者修改方法签名支持异步,难以实现;本着改动最小化,API使用最优化,我们最终选择了第二种方式,即在调用端设置async属性为true,同时在发起调用后从RpcContext中获取一个CompletableFuture对象进行后续的操作。

问题现象

经过异步模式改造,部分依赖很多外部服务的接口耗时有明显的下降,表面看系统一片祥和,但是偶尔的接口可用率降低却是一个非常危险的信号,下面是使用异步调用的某个接口的可用率监控

通过监控我们可以发现,这个接口偶尔会出现可用率降低,一般接口可用率降低可能是因为超时或者触发了某些隐藏问题导致,但是这个接口的逻辑非常简单,就是根据id查询数据库,业务逻辑非常简单,理论上不应该出现这么多可用率降低的情况。我们通过日志排查发现在异步调用使用CompletableFuture的get方法阻塞等待的时候发生了TimeOutException异常,目前接口配置的超时时间为5s,本来接口超时是一个我们经常遇见的问题,但是我们去提供者端查询日志发现,本次请求只耗费了几毫秒,明明提供者端几毫秒或者几十毫秒就返回了,为什么消费端还超时了,带着这个疑问我们继续分析,会不会是JSF异步的原因导致的。

排查定位原因

通过阅读JSF的源码,我们了解到JSF异步调用的基本流程为客户端向服务端发送请求前,会先判断本次请求是否需要走异步调用,如果需要的话,会生成一个JSFCompletableFuture对象 这个类是继承自CompletableFuture的,同时使用一个futureMap对象缓存了请求的唯一msgId和一个MsgFuture对象,MsgFuture对象里面持有了本次调用使用的channel、message、timeout、compatibleFuture等属性,方便服务端回调后,可以通过msgId找到对应的MsgFuture对象做后续处理。

首先在doSendAsyn方法里生成MsgId和MsgFuture对象的映射,然后序列化数据,最后通过netty的长连接向channel里面写入要发送的数据。

(1)生成JSFCompletableFuture

(2)维护msgId和MsgFuture的关系

(3) 维护msgId和MsgFuture的关系

(4)发起调用

服务端收到请求后,会触发服务端的ServerChannelHandler类的channelRead方法被回调,这个方法里面会验证序列化协议,然后生成一个JSFTask的任务,将这个任务提交到JSF的业务线程池去执行,等业务线程池里的任务执行完成以后,会调用write方法将返回值通过channel写回客户端。

(1)服务端收到响应处理

(2)服务端回写响应

客户端收到响应后,会触发客户端的ClientChannelHandler类的channelRead方法,这个方法里面会通过服务端返回的msgId找到客户端缓存的MsgFuture对象,然后会判断对象内的compatibleFuture属性是不是非空,如果非空,会往Callback线程池内提交一个任务,这个任务的主要功能是执行CompletableFuture的completeExceptionally和complete方法,用于触发CompletableFuture的下一阶段执行。

(1)客户端收到响应

(2)找到本地的MsgFuture

(3)将MsgFuture添加到线程池

(4) 触发CompletableFuture的complete或者completeExceptionally方法

通过对已上源码的分析,我们虽然知道了JSF异步调用的全部流程,但是还是无法解释为什么偶尔会出现不应该超时的超时(此处指服务端明明没有超时,客户端还显示超时了),通过对各个流程的排除,我们最终定位到可能和JSF异步回调后将任务添加到Callback线程池去执行CompletableFuture的complete方法有关,因为这个方法会继续执行CompletableFuture后续的阶段,我们业务代码在拿到RpcContext里面返回的CompletableFuture对象以后,一般会使用CompletableFuture的一元依赖方法ThenApply去执行一些后续处理,CompletableFuture的complete方法就是用来触发这些后续阶段去执行的。

异步调用业务代码:

下面介绍一下CompletableFuture的基础知识,每个CompletableFuture都可以被看作一个被观察者,其内部有一个Completion类型的链表成员变量stack,用来存储注册到其中的所有观察者。当被观察者执行完成后会弹栈stack属性,依次通知注册到其中的观察者,所以在这个阶段会去调用我们程序中的ThenApply方法,下图是CompletableFuture内部的关键属性。

图12 thenApply简图

如果上面的异步调用流程感觉不清晰,可以看下面的一张调用关系图

通过查看Callack线程池的默认配置,发现他的核心线程数为20,队列长度256,最大线程数200。看到这我们猜测可能是核心线程数不够用,导致一些回调任务积压在队列中没来得及执行导致了超时。由于无法通过其他方式获取当时CallBack线程池的运行状态,因此我们通过修改业务代码,在发生超时异常的时候获取Callback线程池当前的状态来验证我们的猜测。

(1)获取线程池状态代码

修改完代码上线后,系统运行一段时间出现了接口可用率降低的现象,接着我们查询日志,从日志里可以看出,在发生超时异常的时候,JSF的Callback线程池核心线程数已满,同时队列中积压了71个任务,通过这个日志就可以确定是因为JSF 回调线程池核心线程数满导致任务排队出现的超时

问题分析

1、通过上面的日志我们知道是因为异步线程池满导致的,理论上正常请求就算有些排队应该也会很快就能处理掉,但是我们排查业务代码后发现,我们有些业务在ThenApply里面做了一些耗时的操作、还有在ThenApply里面又调用了另外一个异步方法。

2、第一种情况会导致线程池的线程会被一直占用,其他任务都会在排队,这种其实还是能接受的,但是第二种情况可能会出现线程池循环引用导致死锁,原因是父任务会将异步回调放在线程池执行,父任务的子任务也会将异步回调放在线程池执行,Callback线程池核心线程大小为20,当同一时刻有20个请求到达,则Callback core thread被打满,子任务请求线程时进入阻塞队列排队,但是父任务的完成又依赖于子任务,这时由于子任务得不到线程,父任务无法完成,主线程执行get进入阻塞状态,并且永远无法恢复。

解决方案

**短期方案:**因为线程池核心线程满导致排队,所以将JSF 的回调线程池核心线程数从20调整为200,

**长期方案:**优化代码将ThenApply里面耗时的操作不放在回调线程池执行,同时优化代码逻辑,将在ThenApply方法内部再次开启异步调用的流程去除。

调整完前后的对比:

通过查看监控可以发现,优化后接口可用率一直保持在100%。

作者:京东零售 宋维飞

来源:京东云开发者社区 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/284181.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MATLAB】【数字信号处理】基本信号的仿真与实现

目的 1、用MATLAB软件实现冲激序列 2、用MATLAB软件实现阶跃序列 3、用MATLAB软件实现指数序列 4、用MATLAB软件实现正弦序列 内容与测试结果 1、用MATLAB软件实现冲激序列 程序如下&#xff1a; % 1 冲激序列 clc; clear all; n0 -10; nf 50; ns 1; A 1;%起点为-1&…

SpringBoot灵活集成多数据源(定制版)

如来说世界&#xff0c;非世界&#xff0c;是名世界 如来说目录&#xff0c;非目录&#xff0c;是名目录 前言前期准备代码实现演示扩展 前言 本篇博客基于SpringBoot整合MyBatis-plus&#xff0c;如果有不懂这个的&#xff0c; 可以查看我的这篇博客&#xff1a;快速CRUD的秘诀…

Linux 权限掌控术:深入探索和用户管理

文章目录 前言1.外壳程序是什么&#xff1f;外壳程为什么存在&#xff1f;工作原理外壳程序怎么个事&#xff1f; 2. Linux权限的概念2.1 什么是权限2.2权限的本质2.3 Linux中的用户 3. 普通用户变成rootlinux中有三种人 4.Linux中文件的权限4.1文件的属性权限4.2 掌握修改权限…

数字集成系统设计——逻辑综合

目录 一、概述 1.1 综合的分类 1.2 逻辑综合的基本架构 1.3 逻辑综合的内部流程 1.3.1 RTL代码转译&#xff08;Translation&#xff09; 1.3.2 逻辑级优化&#xff08;Optimization&#xff09; 1.3.3 工艺映射&#xff08;Mapping&#xff09; 二、优化策略 2.1 资源…

Linux之进程管理

什么是进程 在linux中每个执行的程序都称为一个进程&#xff0c;每个进程都分配一个ID号&#xff08;pid进程号&#xff09;。每个进程都可能以两种方式存在&#xff0c;即前台和后天。前台进程就是用户目前的屏幕上可以进行操作的。后台进程则是实际在操作&#xff0c;但屏幕…

AD教程 (二十一)模块化布局规划

AD教程 &#xff08;二十一&#xff09;模块化布局规划 原理图是按照我们的功能模块去进行排布划分的 利用交叉选择模式分屏快速进行模块化布局 分屏&#xff0c;选中任意文档&#xff0c;右击&#xff0c;点击垂直分割 交叉选择模式&#xff0c;点击工具&#xff0c;交叉选…

【模拟电路】软件Circuit JS

一、模拟电路软件Circuit JS 二、Circuit JS软件配置 三、Circuit JS 软件 常见的快捷键 四、Circuit JS软件基础使用 五、Circuit JS软件使用讲解 欧姆定律电阻的串联和并联电容器的充放电过程电感器和实现理想超导的概念电容阻止电压的突变&#xff0c;电感阻止电流的突变LR…

基于SpringBoot的校园二手闲置交易平台

基于SpringBoot的校园二手闲置交易平台的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 登录界面 管理员界面 摘要 本文基于Spring Boot框架设计并实现了一款…

buuctf-Misc 题目解答分解103-105

103.[GKCTF 2021]签到 追踪流发现类似flag 字符 f14g 下面有大量的是16进制字符 64306c455357644251306c6e51554e4a5a3046355355737764306c7154586c4a616b31355357704e65556c7154586c4a616b31355357704e65556c7154586c4a616b31355357704e65556c7154586c4a616b31355357704e655…

git rebase应用场景三

文章目录 git rebase应用场景三 git rebase应用场景三 在我们的开发分支中 假设我们修改一个文件 提交一个版本 再回到master分支 同时也去修改1.txt文件&#xff0c;提交一个版本 这样相当于master分支提交了一次&#xff0c;dev也提交了一次 然后回到dev分支 此时会报错…

【网络安全】upload靶场pass11-17思路

目录 Pass-11 Pass-12 Pass-13 Pass-14 Pass-15 Pass-16 Pass-17 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da;。 &#x…

gRPC之内置Trace

1、内置Trace grpc内置了客户端和服务端的请求追踪&#xff0c;基于golang.org/x/net/trace包实现&#xff0c;默认是开启状态&#xff0c;可以查看事 件和请求日志&#xff0c;对于基本的请求状态查看调试也是很有帮助的&#xff0c;客户端与服务端基本一致&#xff0c;这里…

Delphi6函数大全4-SysUtils.pas

Delphi6函数大全4-SysUtils.pas首部 function FormatFloat(const Format: string; Value: Extended): string; $[SysUtils.pas功能 返回浮点数类型以指定格式字符串Format转换成字符串说明 FormatFloat(,.00, 1234567890) 1,234,567,890.00参考 function …

element表格排序功能

官方展示 个人项目 可以分别对每一项数据进行筛选 注&#xff1a;筛选的数据不能是字符串类型必须是数字类型&#xff0c;否则筛选会乱排序 html <el-table :data"tableData" border height"600" style"width: 100%"><el-table-co…

实验六——cache模拟器实验

前言 本次实验的主要目的是熟悉cache的原理。加深对cache的映像规则、替换方法、cache命中与缺失的理解。通过实验对比分析映像规则对cache性能的影响。 实验内容一&#xff1a;熟悉模拟程序 阅读给出的cache模拟程序&#xff08;cachesimulator.cpp&#xff09;&#xff0c;…

Linux学习之系统编程1(关于读写系统函数)

写在前面&#xff1a; 我的Linux的学习之路非常坎坷。第一次学习Linux是在大一下的开学没多久&#xff0c;结果因为不会安装VMware就无疾而终了&#xff0c;可以说是没开始就失败了。第二次学习Linux是在大一下快放暑假&#xff08;那个时候刚刚过完考试周&#xff09;&#xf…

基于Java在线商城系统设计实现(源码+部署文档+讲解视频)

博主介绍&#xff1a; ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌&#x1f345; 文末获取源码联系 &#x1f345;&#x1f447;&#x1f3fb; 精彩专栏 推荐订阅 &#x1f447;&#x1f3fb; 不然下次找不到 Java项目精品实…

目标检测-Two Stage-Mask RCNN

文章目录 前言一、Mask RCNN的网络结构和流程二、Mask RCNN的创新点总结 前言 前文目标检测-Two Stage-Faster RCNN提到了Faster RCNN主要缺点是&#xff1a; ROI Pooling有两次量化操作&#xff0c;会引入误差影响精度 Mask RCNN针对这一缺点做了改进&#xff0c;此外Mask …

Airtest的iOS实用接口介绍

前段时间Airtest更新了1.3.0.1版本&#xff0c;里面涉及非常多的iOS功能新增和改动&#xff0c;今天想详细跟大家聊一下里面的iOS设备接口。 PS&#xff1a;本文示例均使用本地连接的iOS设备&#xff0c;Airtest版本为1.3.0.1 。 安装接口&#xff1a;install、install_app …

使用css实现 Typora markdown 标题自动编号

第一&#xff0c;找到主题文件夹 第二&#xff0c;复制下面代码放入 AutoNumber.css文件中 body {counter-reset: h1; }#write h1, .markdown-section h1 {counter-reset: h2; }#write h2, .markdown-section h2 {counter-reset: h3; }#write h3, .markdown-section h3 {counte…
最新文章