2020年认证杯SPSSPRO杯数学建模A题(第二阶段)听音辨位全过程文档及程序

2020年认证杯SPSSPRO杯数学建模

A题 听音辨位

原题再现:

  把若干 (⩾ 1) 支同样型号的麦克风固定安装在一个刚性的枝形架子上 (架子下面带万向轮,在平地上可以被水平推动或旋转,但不会歪斜),这样的设备称为一个麦克风树。不同的麦克风由于位置不同,录制到的声音往往也有细微的不同,所以通过对多支麦克风接收到的声音进行对比分析,可以得到更多的有关声源的信息。我们假设每个麦克风都是全向的,也就是单麦克风无法分辨声源的方向。
  现在有一个地面、墙壁和天花板都是光滑大理石的大厅,大厅内空旷而安静。在大厅里只有一个走动的人,发出清晰的脚步声。我们准备在大厅里安放一个麦克风树,希望通过检测声音来进行一些测量,包括尽量准确地实时确定这个人的位置,也包括测量这个大厅的某些几何参数。请你建立合理的数学模型,设计一个成本尽量低、而且可以达到使用要求的麦克风树。要求给出每支麦克风的相对位置以及相对于地面的高度,至于枝形架子的具体力学结构则不需要考虑。
  第二阶段问题: 在录制唱片时,有一种非常特殊的录音方式,称为人头录音。人头录音通常是使用一个人头的塑胶模型,将两个麦克风分别放在两个耳朵里,分别负责左右两个声道的录制,以此来仿效人耳的收听效果。人头录音的唱片在使用耳机收听时有极佳的定位效果,可以使收听者相当清楚地感受到声源在收听者的前后左右等不同位置,有如身临其境。当然它只能通过耳机来回放,使用音箱就失去了应有的效果。
  已知大厅的平面形状是矩形,地面和天花板都是水平的。此时我们不知道大厅的轮廓尺寸。大厅中可能有少量几根方形柱子,柱子的侧壁和墙壁平行,但具体位置和尺寸未知。柱子表面也是光滑的大理石。
  我们希望使用一个麦克风树来录制大厅里的音效,并将多个麦克风的录制信号进行后期处理,以尽量准确地模仿人头录音的效果。请给出成本尽量低的麦克风树的设计方案,以及对录制信号的后期处理算法。

整体求解过程概述(摘要)

  麦克风树在听声辨位研究中逐渐得到了普及,许多兴趣人士也乐此不疲的在不同方向上展开研究探索,如对通过麦克风树来模仿人头录音效果问题的探究。本文针对麦克风树听声辨位模仿人头录音效果的问题,建立了方案寻优模型得出了以 5 支麦克风组成的十字形均排布的设计方案,同时针对大厅中存在方形柱子的情况给出了声源定位算法。最后,使用后期音频处理算法对录制声音信号进行三维音效渲染,生成了具有人头录音效果的双耳三维音频信号。
  针对问题一,考虑到成本尽量低和尽可能准确地模仿人头录音的效果,建立了麦克风树的最优化模型。人头录音唱片在收听者使用耳机收听时,收听者会感受到声源在自身的前后左右不同位置,为满足这一定位效果,在成本尽可能低的约束下,对麦克风阵列在数量上和结构上进行分析研究,分别对 2 支,3 支,4 支和 5 支麦克风以及一维、二维排布的定位效果进行寻优。最终,给出的设计方案为:由 5 支麦克风组成二维水平十字型麦克风树最优化模型。
  针对问题二,基于点声源传播特点和空间几何方法,给出了时实的声源点定位算法。基于声音在传播过程中为直达波的条件下,对问题一中的最优设计方案进行分析。由于每 2 支麦克风的接收途径可得两个测量坐标,录制信号不受方形柱子影响时,5 支麦克风组成的阵列最多会产生 20 种不同的声源位置。其中有 10 个坐标的位置是比较接近的,另外有 10 个坐标的位置是分散的,对 10 个坐标的位置是比较接近的求加权平均值,最终较为精确地定位出声源位置的具体坐标。录制信号受到方形柱子影响时,由于大厅柱子的影响,可能导致一至两个麦克风接收到的信号数据失真,将这些麦克风的失效数据全部舍弃,用剩余的几个麦克风来确定声源的位置坐标。
  针对问题三,建立了录制信号的后期处理算法,并对音频信号进行渲染处理,进而得出了较准确的人头录音音效的音频信号。首先,基于头相关传输函数 HRTF 算法,结合录制得到的音频信号,针对声源信号的坐标位置进行三维立体音效渲染;然后,利用双耳三维音频合成算法合成具有空间方位感的三维音频信号;最后,将渲染后的三维音频信号通过双耳耳机播放,即可获得人头录音音效。
  最后,使用 Matlab 编程进行仿真模拟实验,利用仿真模拟实验的数据对声源定位算法的精准度进行定量分析与误差检验,并对音频信号处理算法的误差进行了定性分析。综合分析得出:本模型具有较高的可靠性、准确性和精准度,且算法处理后的音频信号能够较准确的模拟人头录音效果。

问题分析:

  问题的总体分析
  本文的整体任务:给出成本尽量低、能够尽可能达到人头录音效果的麦克风设计方案,并给出声音信号后期处理算法。
  由任务出发进行分析:考虑到人头录音效果有极佳的定位效果,可以使用头相关传输函数针对较为精准的声源空间位置进行三维音效渲染,进而使音效能够达到人头录音的效果。于是,问题转化成求解较为精准的声源定位问题,需给出声源定位算法,进而以声源定位的精度与成本作为约束条件求解最优化设计方案。故本文需解决的问题可以分为问题一、问题二、问题三去求解,即问题一为设计最优化麦克风数方案的求解,问题二为声源定位算法的求解,问题三后期声音信号处理算法的求解。
  综上可知:本文通过对麦克风树听声辨位并达到人头录音效果的问题进行分析研究,首先需建立满足定位要求和人头录音效果的麦克风树优化模型,并通过所建立的麦克风树模型给出大厅中存在柱子影响时人的定位,最后,为满足更加贴近人头录音效果,即收听者在佩戴耳机时可感受到声源在自身前后左右等方位的情境,给出相应的录制信号的后期处理算法。
在这里插入图片描述
  问题一的分析
  本题麦克风树在满足成本尽可能低的约束条件下,在原有麦克风定位声源的基础上,要尽可能准确地模仿人头录音的效果,人头录音的唱片在收听者使用耳机收听时,可感受到声源在收听者的前后左右等位置。对于问题中麦克风树的设计方案可解读为在满足要求的前提下建立最优化模型。
  问题二的分析
  本题主要是对上述寻优模型中得出的优化方案的定位求解,对优化方案进行分析后,我们可以在问题二中建立模型,当录制信号不受柱子影响时,通过对 5 只麦克风录制声源数据的处理,可以求得更加贴近于真实位置的坐标点。当录制信号受柱子影响时,导致一至两个麦克风所接收到的数据失效,用剩余的麦克风接收到的数据来定位声源位置坐标

  问题三的分析
  问题三的目的:建立后期录制的音频信号处理算法,使处理后的音频信号具有较准确人头录音的音效。
  思路分析:首先,考虑到头相关传输函数能够较好地渲染三维音效,且能够获得较好的人头录音效果;然后,给出头相关传输函数相关求解算法,并使用头相关传输函数针对声源空间位置进行三维音效渲染,再通过双耳三维音频合成算法合成渲染后的音频信号;最后,通过双耳耳机输出处理后的信号,即可得到具有人头录音音效的信号。

模型假设:

  假设一:每支麦克风都是全向的;
  假设二:录制的声音回放只通过耳机进行;
  假设三:声音在空气中传播所衰减的能量可以忽略不计;
  假设四:声音在大理石表面反射时会产生一定能量的衰减;

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

%本程序用于仿真模拟声源发出声音信号的实验
clear;clc;
H=1.8;%麦克风树的高度
R=1;%麦克风距离十字中心点的距离
%a=45;b=20;c=4;%墙长 45,宽 20,高 4
v=340;%取声速 340
n=[0,0,H;0,-R,H;R,0,H;0,R,H;-R,0,H];%麦克风的坐标位置
x1=-6:3:6;%取样本点来模拟
x2=-6:0.5:6;
y1=sqrt(36-x1.^2);%人行走的轨迹
y2=-sqrt(36-x1.^2);%人行走的轨迹
y3=sqrt(36-x2.^2);
y4=-sqrt(36-x2.^2);
X=[x2,x2];
Y=[y3,y4];
y=[y1,y2];
x=[x1,x1];
plot(X,Y,x,y,'o')
M=[x',y'];%声源点的在 xoy 面内的坐标位置位置
fprintf('选取行人轨迹中的点坐标(x,y)分别为:\n');
disp(M);
for i=1:10
 for j=1:5
 t1(i,j)=sqrt((x(i)-n(j,1))^2+(y(i)-n(j,2))^2+(n(j,3))^2)/v;
 end
end
fprintf('不同声源信号到达 n1、n2、n3、n4、n5 的时间\n');
disp(t1);
%以上为模拟仿真过程
#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
int main(){
double v=340;
double L1,L2,L3,L4,L5;
double t1,t2,t3,t4,t5;
double r1,r2,r3,r4,r5;
double x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6;
double x7,y7,x8,y8,x9,y9,x10,y10,x,y;
double x11,y11,x22,y22,x33,y33,x44,y44,x55,y55,x66,y66;
double x77,y77,x88,y88,x99,y99,x1010,y1010;
double h,d;
double b1,b2,b3,b4,b5,b6,b7,b8,b9,b10;
double q1,q2,q3,q4,q5,q6,q7,q8,q9,q10;
cout<<"麦克风的高度 h"<<endl;
cout<<"h="<<"";
cin>>h;
cout<<"相临两个麦克风之间的距离"<<endl;
cout<<"d="<<"";
cin>>d;
for(int i=1;i<9;i++){
cout<<"请输入每个麦克风第一次接收到信号的时间 t1,t2,t3,t4,t5"<<endl;
cout<<"t1="<<"";
cin>>t1;
cout<<"t2="<<"";
cin>>t2;
cout<<"t3="<<"";
cin>>t3;
cout<<"t4="<<"";
cin>>t4;
cout<<"t5="<<"";
cin>>t5;
L1=v*t1;
r1=sqrt(L1*L1
-h*h);
L2=v*t2;
r2=sqrt(L2*L2
-h*h);
L3=v*t3;
r3=sqrt(L3*L3
-h*h);
L4=v*t4;
r4=sqrt(L4*L4
-h*h);
L5=v*t5;
r5=sqrt(L5*L5
-h*h);
 b1=(d*d+r2*r2
-r1*r1)/(2*d*r2);
 q1=sqrt(1
-b1*b1);
 x1=r2*q1;
 y1=r2*b1
-d;
 cout<<setprecision(4)<<"x1="<<x1<<endl;
 cout<<setprecision(4)<<"y1="<<y1<<endl;
 x11=
-1*x1;
 y11=y1;
 cout<<setprecision(4)<<"x11="<<x11<<endl;
 cout<<setprecision(4)<<"y11="<<y11<<endl;
 b2=(d*d+r1*r1
-r3*r3)/(2*d*r1);
 q2=sqrt(1
-b2*b2);
 x2=r1*b2;
 y2=r1*q2;
 cout<<setprecision(4)<<"x2="<<x2<<endl;
 cout<<setprecision(4)<<"y2="<<y2<<endl;
 x22=x2;
 y22=
-1*y2;
 cout<<setprecision(4)<<"x22="<<x22<<endl;
 cout<<setprecision(4)<<"y22="<<y22<<endl;
 b3=(d*d+r1*r1
-r4*r4)/(2*d*r1);
 q3=sqrt(1
-b3*b3);
 x3=r1*q3;
 y3=r1*b3;
 cout<<setprecision(4)<<"x3="<<x3<<endl;
 cout<<setprecision(4)<<"y3="<<y3<<endl;
 x33=
-1*x3;
 y33=y3;
 cout<<setprecision(4)<<"x33="<<x33<<endl;
 cout<<setprecision(4)<<"y33="<<y33<<endl;
 b4=(d*d+r5*r5
-r1*r1)/(2*d*r5);
 q4=sqrt(1
-b4*b4);
 x4=r5*b4
-d;
 y4=r5*q4;
 cout<<setprecision(4)<<"x4="<<x4<<endl;
 cout<<setprecision(4)<<"y4="<<y4<<endl;
 x44=x4;
 y44=
-y4;
 cout<<setprecision(4)<<"x44="<<x44<<endl;
cout<<setprecision(4)<<"y44="<<y44<<endl;
 b5=(2*d*d+r2*r2
-r3*r3)/(2*sqrt(2)*d*r2);
 q5=sqrt(1
-b5*b5);
 x5=r2*((sqrt(2)/2)*(b5
-
q5));
 y5=r2*((sqrt(2)/2)*(b5+q5))
-d;
 cout<<setprecision(4)<<"x5="<<x5<<endl;
 cout<<setprecision(4)<<"y5="<<y5<<endl;
 x55=(x5
-1*x5+2*y5+2)/2;
y55=(2*x5+y5
-
2
-y5)/2;
cout<<setprecision(4)<<"x55="<<x55<<endl;
 cout<<setprecision(4)<<"y55="<<y55<<endl; 
 b6=(2*d*2*d+r2*r2
-r4*r4)/(4*d*r2);
 q6=sqrt(1
-b6*b6);
 x6=r2*q6;
 y6=r2*b6
-d;
 cout<<setprecision(4)<<"x6="<<x6<<endl;
 cout<<setprecision(4)<<"y6="<<y6<<endl;
 x66=
-1*x6;
 y66=y6;
 cout<<setprecision(4)<<"x66="<<x66<<endl;
 cout<<setprecision(4)<<"y66="<<y66<<endl;
 b7=(2*d*d+r5*r5
-r2*r2)/(2*sqrt(2)*d*r5);
 q7=sqrt(1
-b7*b7);
 x7=r5*((sqrt(2)/2)*(b7+q7))
-d;
 y7=r5*((sqrt(2)/2)*(q7
-b7));
 cout<<setprecision(4)<<"x7="<<x7<<endl;
 cout<<setprecision(4)<<"y7="<<y7<<endl;
 x77=(x7
-x7+(2*
-1*y7)
-2)/2;
 y77=(
-2*x7+y7
-
2
-y7)/2;
 cout<<setprecision(4)<<"x77="<<x77<<endl;
 cout<<setprecision(4)<<"y77="<<y77<<endl;
 b8=(2*d*d+r4*r4
-r3*r3)/(2*sqrt(2)*d*r4);
 q8=sqrt(1
-b8*b8);
 x8=r4*((sqrt(2)/2)*(b8+q8));
 y8=r4*((sqrt(2)/2)*(q8
-b8))+d;
 cout<<setprecision(4)<<"x8="<<x8<<endl;
 cout<<setprecision(4)<<"y8="<<y8<<endl;
 x88=(x8
-x8
-2*y8+2)/2;
 y88=(
-2*x8+y8+2
-y8)/2;
 cout<<setprecision(4)<<"x88="<<x88<<endl;
 cout<<setprecision(4)<<"y88="<<y88<<endl;
 b9=(4*d*d+r5*r5
-r3*r3)/(4*d*r5);
 q9=sqrt(1
-b9*b9);
 x9=r5*b9
-d;
 y9=r5*q9;
 cout<<setprecision(4)<<"x9="<<x9<<endl;
 cout<<setprecision(4)<<"y9="<<y9<<endl;
 x99=x9;
 y99=
-1*y9;
 cout<<setprecision(4)<<"x99="<<x99<<endl;
 cout<<setprecision(4)<<"y99="<<y99<<endl;
 b10=(2*d*d+r5*r5
-r4*r4)/(2*sqrt(2)*d*r5);
 q10=sqrt(1
-b10*b10);
 x10=r5*((sqrt(2)/2)*(b10
-q10))
-d;
 y10=r5*((sqrt(2)/2)*(b10+q10));
 cout<<setprecision(4)<<"x10="<<x10<<endl;
 cout<<setprecision(4)<<"y10="<<y10<<endl;
 x1010=(x10-x10+2*y10-2)/2;
 y1010=(2*x10+y10+2-y10)/2;
 cout<<setprecision(4)<<"x1010="<<x1010<<endl;
 cout<<setprecision(4)<<"y1010="<<y1010<<endl;}
return 0;
}
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/289996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

imgaug库指南(二):从入门到精通的【图像增强】之旅

文章目录 引言前期回顾代码示例小结结尾 引言 在深度学习和计算机视觉的世界里&#xff0c;数据是模型训练的基石&#xff0c;其质量与数量直接影响着模型的性能。然而&#xff0c;获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此&#xff0c;数据增强技术应…

SpingBoot的项目实战--模拟电商【3.购物车模块】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringBoot电商项目的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.功能需求 二.代码编写 …

微服务-Gateway

案例搭建 官网地址 父Pom <com.alibaba.cloud.version>2.2.8.RELEASE</com.alibaba.cloud.version> <com.cloud.version>Hoxton.SR12</com.cloud.version> <com.dubbo.version>2.2.7.RELEASE</com.dubbo.version> <dependencyManagem…

文件摆渡系统如何实现网络隔离后的数据交换、业务流转?

近年来全球网络安全威胁态势的加速严峻&#xff0c;使得企业对于网络安全有了前所未有的关注高度。即便没有行业性的强制要求&#xff0c;但在严峻的安全态势之下&#xff0c;企业的网络安全体系建设正从“以合规为导向”转变到“以风险为导向”&#xff0c;从原来的“保护安全…

【操作系统xv6】学习记录--实验1 Lab: Xv6 and Unix utilities--未完

ref:https://pdos.csail.mit.edu/6.828/2020/xv6.html 实验&#xff1a;Lab: Xv6 and Unix utilities 环境搭建 实验环境搭建&#xff1a;https://blog.csdn.net/qq_45512097/article/details/126741793 搭建了1天&#xff0c;大家自求多福吧&#xff0c;哎。~搞环境真是折磨…

nginx在国产服务器上stream配置项无法识别的问题

最近在搭建k8sranchar&#xff0c;需要用到nginx做负载均衡&#xff0c;之前在系统中也会用到&#xff0c;之前一直使用http选项&#xff0c;做转发配置。 基本格式如下图所示&#xff1a; 但是在ranchar的安装中默认方式使用stream配置项。 使用yum默认安装的nginx不支持该关…

MySQL四大引擎,数据库管理,数据表管理,数据库账号管理

MySQL四大引擎 InnoDB InnoDB引擎是MySQL默认的存储引擎。它支持事务和行级锁定&#xff0c;并具有高并发性和数据完整性保护的特性。InnoDB适用于具有复杂查询和高并发读写操作的应用程序。MyISAM InnoDB引擎特点和优势 事务支持&#xff1a;InnoDB支持ACID&#xff08;原子…

设备树入门

设备树 设备树是一种树形数据结构&#xff0c;其节点描述系统中的设备。每个节点都有描述所表示设备的特征的属性/值对。每个节点只有一个父节点&#xff0c;但根节点除外&#xff0c;根节点没有父节点。 符合 DTSpec 的设备树描述了系统中不一定能被客户端程序动态检测到的设…

数据库攻防学习之MySQL

MySQL 0x01mysql学习 MySQL 是瑞典的MySQL AB公司开发的一个可用于各种流行操作系统平台的关系数据库系统&#xff0c;它具有客户机/服务器体系结构的分布式数据库管理系统。可以免费使用使用&#xff0c;用的人数很多。 0x02环境搭建 这里演示用&#xff0c;phpstudy搭建的…

分布微服软件体系快速云端架构

1 概述 分布微服软件体系云端架构平台&#xff0c;以主流的NACOS服务器作为注册配置中心&#xff0c;采用主流的Gradle框架&#xff0c;内嵌Tomcat10以上版本&#xff0c;用于快速构造各类基于JDK17以上的信息应用系统的分布式微服务软件体系架构&#xff0c;可以适用关系型SQ…

django学习:页面渲染与请求和响应

1.请求过程 2.页面渲染 在app中新建一个目录&#xff08;Directory&#xff09;&#xff0c;文件名命名为templates。该文件名命名是固定的&#xff0c;不可命名出错&#xff0c;如若后续步骤出错&#xff0c;该目录文件名是一个检查的重点项目。在该目录下新建一个html文件&a…

Nginx 负载均衡集群 节点健康检查

前言 正常情况下&#xff0c;nginx 做反向代理负载均衡的话&#xff0c;如果后端节点服务器宕掉的话&#xff0c;nginx 默认是不能把这台服务器踢出 upstream 负载集群的&#xff0c;所以还会有请求转发到后端的这台服务器上面&#xff0c;这样势必造成网站访问故障 注&#x…

高德地图经纬度坐标导出工具

https://tool.xuexiareas.com/map/amap 可以导出单个点&#xff0c;也可以导出多个&#xff0c;多个点可以连成线&#xff0c;可用于前端开发时自己模拟“线“数据

解决burpsuite代理8080端口无法勾选以及卸载NI系列软件的方法

使用burpsuite中遇到这样一个问题 默认的8080端口无法绑定 提示端口已经被占用 尝试绑定其他端口&#xff0c;是可行的&#xff0c;也可以正常抓包 但是总感觉每次进来都设置添加一次&#xff0c;有点麻烦不舒服 那么我们来看一下8080端口到底被什么进程占用了 使用如下命令…

数据库攻防学习

免责声明 本文仅供学习和研究使用,请勿使用文中的技术用于非法用途,任何人造成的任何负面影响,与本号及作者无关。 Redis 0x01 redis学习 在渗透测试面试或者网络安全面试中可能会常问redis未授权等一些知识&#xff0c;那么什么是redis&#xff1f;redis就是个数据库&#xff…

【vue/uniapp】pdf.js 在一些型号的手机上不显示

引入&#xff1a; uniapp 项目通过 pdf.js 来在线浏览 pdf 链接&#xff0c;在微信小程序中都显示正常&#xff0c;但是通过 app 跳转小程序&#xff0c;在苹果、小米显示正常&#xff0c;但是华为和 oppo 就不显示&#xff0c;可以通过降 pdf.js 的版本来解决这个问题。 解决&…

在前端开发中,如何优化网站的加载速度?

在前端开发中&#xff0c;网站的加载速度是一个至关重要的因素&#xff0c;它直接影响着用户体验和搜索引擎优化&#xff08;SEO&#xff09;。一个快速、响应迅速的网站不仅能让用户更加满意&#xff0c;还能提高网站的排名和流量。那么&#xff0c;如何优化网站的加载速度呢&…

【第一期】操作系统期末大揭秘:知识回顾与重点整理

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、数据结构 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 操作系统概述1.1 操作系统定义1.2 操作系统的作用1.3 操作系统的功能1.4 操作…

Pruning Papers

[ICML 2020] Rigging the Lottery: Making All Tickets Winners 整个训练过程中mask是动态的&#xff0c;有drop和grow两步&#xff0c;drop是根据权重绝对值的大小丢弃&#xff0c;grow是根据剩下激活的权重中梯度绝对值生长没有先prune再finetune/retrain的两阶段过程 Laye…

顶顶通呼叫中心中间件配置指定振铃时间挂断(mod_cti基于FreeSWITCH)

介绍 一般情况默认是振铃60秒挂断&#xff0c;但是如果想振铃10秒就挂断可以根据下方配置方法一步步去配置。 一、通过线路控制振铃时间 打开ccadmin-》点击线路-》点击你需要控制振铃时间的线路-》配置呼叫超时-》点击更新。 二、通过队列外呼控制振铃时间 打开ccadmin-》…
最新文章