大型语言模型的幻觉问题

1.什么是大模型幻觉?

在语言模型的背景下,幻觉指的是一本正经的胡说八道:看似流畅自然的表述,实则不符合事实或者是错误的。

幻觉现象的存在严重影响LLM应用的可靠性,本文将探讨大型语言模型(LLMs)的幻觉问题,以及解决幻觉现象的一些常见方法。

2.为什么需要解决LLM的幻觉问题?

LLMs的幻觉可能会产生如传播错误信息或侵犯隐私等严重后果。 比如在医疗应用中,对患者生成的报告如果存在幻觉可能导致错误诊断甚至影响生命安全。

幻觉影响了模型的可靠性和可信度,因此需要解决LLM的幻觉问题。

3.幻觉一定是有害的吗?

幻觉不一定是有害的,特别是在一些需要创造力或灵感的场合,比如写电影剧情,幻觉的存在可能带来一些奇思妙想,使得生成的文本充满想象力。

因此,对幻觉的容忍度取决于具体的应用场景。

4.幻觉有哪些不同类型?

幻觉主要可以分为两类:即内在幻觉和外在幻觉。

  • 内在幻觉:生成的内容与源内容相矛盾。
  • 外部幻觉:生成的内容不能从源内容中得到验证,既不受源内容支持也不受其反驳。

5.为什么LLM会产生幻觉?

有一些研究也在致力于分析幻觉出现的不同原因,已知的一些原因包括:

  1. 源与目标的差异:当我们在存在源与目标差异的数据上训练模型时,模型产生的文本可能与原始源内容产生偏差。这种差异,有时可能是在数据收集过程中不经意间产生的,有时则是故意为之。
  2. 无意识的源-目标差异:这种差异的产生有多种原因。例如,数据可能是基于某种经验法则编制的,使得目标信息并不总是完全依赖源信息。举例来说,如果从两家不同的新闻网站获得相同事件的报道作为源与目标,目标报道中可能包含源报道没有的信息,从而导致二者不同。
  3. 有意识的源-目标差异:某些任务在本质上并不追求源与目标的严格一致,尤其是在需要多样性输出的情境下。
  4. 训练数据的重复性:训练过程中使用的数据,如果存在大量重复,可能导致模型在生成时过于偏好某些高频短语,这也可能引发“幻觉”。
  5. 数据噪声的影响:使用充斥噪声的数据进行训练,往往是导致“幻觉”出现的关键因素之一。
  6. 解码过程中的随机性:某些旨在增加输出多样性的解码策略,如top-k采样、top-p方法以及温度调节,有时会增加“幻觉”的产生。这往往是因为模型在选择输出词汇时引入了随机性,而没有始终选择最可能的词汇。
  7. 模型的参数知识偏向:有研究表明,模型在处理信息时,可能更依赖其在预训练阶段所积累的知识,而忽略了实时提供的上下文信息,从而偏离了正确的输出路径。
  8. 训练与实际应用中的解码差异:在常见的训练方法中,我们鼓励模型基于真实数据预测下一个词汇。但在实际应用中,模型则是根据自己先前生成的内容进行预测。这种方法上的差异,尤其在处理长文本时,可能会导致模型的输出出现“幻觉”。

最后,如GPT之类的生成模型,其实只是学会了文本中词汇间的统计规律,所以它们生成内容的准确性仍然是有限的

6.如何度量幻觉?

最有效可靠的方式当然是靠人来评估,但是人工评估的成本太高了。因此有了一些自动化评估的指标:

  • 命名实体误差:命名实体(NEs)是“事实”描述的关键组成部分,我们可以利用NE匹配来计算生成文本与参考资料之间的一致性。直观上,如果一个模型生成了不在原始知识源中的NE,那么它可以被视为产生了幻觉(或者说,有事实上的错误)。
  • 蕴含率:该指标定义为被参考文本所蕴含的句子数量与生成输出中的总句子数量的比例。为了实现这一点,可以采用成熟的蕴含/NLI模型。
  • 基于模型的评估:应对复杂的句法和语义变化。
  • 利用问答系统:此方法的思路是,如果生成的文本在事实上与参考材料一致,那么对同一个问题,其答案应该与参考材料相似。具体而言,对于给定的生成文本,问题生成模型会创建一组问题-答案对。接下来,问答模型将使用原始的参考文本来回答这些问题,并计算所得答案的相似性。
  • 利用信息提取系统:此方法使用信息提取模型将知识简化为关系元组,例如<主体,关系,对象>。这些模型从生成的文本中提取此类元组,并与从原始材料中提取的元组进行比较。

7.如何缓解LLM幻觉?

与幻觉有关的数据问题可以(至少理论上)通过创建高质量无噪声的数据集来解决。但是,验证和清理数百GB的文本语料库难度太大了。

因此也有了一些其他的方法:

  • 利用外部知识验证正确性
  • 修改解码策略
  • 采样多个输出并检查其一致性
7.1 通过使用外部知识验证主动检测和减轻幻觉

《A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence Generation》

作者发现

  • 幻觉的生成是会传播的,比如一句话出现幻觉,后续生成的文本可能也会出现幻觉甚至更严重。这意味着,如果我们能够“主动”检测并减轻幻觉,那么我们也可以阻止其在后续生成的句子中的传播。
  • logit输出值(输出词汇表上的概率分布)可以用来获取幻觉的信号。具体地说,我们计算了一个概率得分,并展示了当这个得分很低时,模型更容易产生幻觉。因此,它可以作为幻觉的一个信号,当得分很低时,可以对生成的内容进行信息验证。

基于这两个发现,作者提出了主动检测和减轻的方法

在这里插入图片描述

检测阶段,首先确定潜在幻觉的候选者,即生成句子的重要概念。然后,利用其logit输出值计算模型对它们的不确定性并检索相关知识。

减轻阶段,使用检索到的知识作为证据修复幻觉句子。将修复的句子附加到输入(和之前生成的句子)上,并继续生成下一个句子。这个过程不仅减轻了检测到的幻觉,而且还阻止了其在后续生成的句子中的传播。

7.2 事实核心采样

《Factuality Enhanced Language Models for Open-Ended Text Generation》

在这种方法中,作者认为,采样的“随机性”在用于生成句子的后半部分时,对事实性的损害比在句子的开头更大。因为在句子的开始没有前文,所以只要它在语法和上下文上是正确的,LM就可以生成任何内容。然而,随着生成的进行,前提变得更为确定,只有更少的单词选择可以使句子成为事实。因此,他们引入了事实核心采样算法,该算法在生成每个句子时动态调整“核心”p。在事实核心采样中,生成每个句子的第t个标记的核心概率pt为,

其中,λ是top-p概率的衰减因子,ω是概率的下限衰减。

7.3 SelfCheckGPT

SelfCheckGPT的主要思想是:如果模型真的掌握某个事实,那么多次生成的结果应该是相似的且事实一致的;相反,如果模型在胡扯,那么随机采样多次的结果会发散甚至矛盾。

在这里插入图片描述

因此,他们从模型中采样多个response(比如通过变化温度参数)并测量不同response之间的信息一致性,以确定哪些声明是事实,哪些是幻觉。这种信息一致性可以使用各种方法计算,比如可以使用神经方法计算语义等价(如BERTScore)或使用IE/QA-based方法。

8.LLMs什么时候最容易产生幻觉?

  • 数值混淆:当LLM处理与数字有关的文本,如日期或数值时,容易产生幻觉。
  • 处理长文本:在需要解读长期依赖关系的任务中,例如文档摘要或长对话历史,模型可能会生成自相矛盾的内容。
  • 逻辑推断障碍:若模型误解了源文本中的信息,它有可能产生不准确的结论。因此,模型的逻辑推理能力至关重要。
  • 上下文与内置知识的冲突:模型在处理信息时,可能会过度依赖于预训练阶段获取的知识,而忽略实际上下文,导致输出不准确。
  • 错误的上下文信息:当给定的上下文包含错误信息或基于错误的假设时(如:“为什么高尔夫球比篮球大?”或“氦的原子序数为什么是1?”),模型可能无法识别这些错误,并在其回答中产生幻觉。

参考资料:

  • The Hallucination Problem of Large Language Models

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/297973.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis-Plus乐观锁配置使用流程【OptimisticLockerInnerInterceptor】

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家:人工智能学习网站 1.乐观锁实现 1.配置插件 1.XML方式 <bean class"com.baomidou.mybatisplus.extension.plugins.inner.OptimisticLockerInnerI…

CRM如何精确控制RT设备和与UMD通信笔记

1 CRM工作职责 监控link req是否得到schedule监控link上各个device的req是否ready监控SOF或EOF的trigger信号&#xff0c;决定各个设备配置哪个req 2 CRM如何精确控制RT设备 分两步&#xff0c;一是crm知道某帧req的link dev准备好了&#xff0c;可以做apply setting。 二是…

获取小红书笔记详情API调用说明(含请求示例参数说明)

前言 小红书&#xff0c;是一个引领全球时尚潮流的社交电商平台。在这里&#xff0c;你可以发现世界各地的优质好物&#xff0c;从美妆护肤、穿搭时尚&#xff0c;到家居生活、旅行美食&#xff0c;一切应有尽有。同时&#xff0c;这里也是一个分享生活点滴的平台&#xff0c;…

YOLOv5+混合注意力机制再涨4.3%,Transformer混合设计依旧可以卷

在工业生产过程中&#xff0c;由于低效率、不统一的评估、高成本以及缺乏实时数据&#xff0c;传统的手动检测焊接缺陷不再被应用。 为了解决表面贴装技术中焊接缺陷检测的低准确率、高误检率和计算成本问题&#xff0c;提出了一种新方法。该方法是一种专门针对焊接缺陷检测算法…

集团企业OA办公协同平台建设方案

一、企业对协同应用的需求分析 实现OA最核心、最基础的应用 业务流转&#xff1a;收/发文、汇报、合同等各种审批事项的业务协作与办理 信息共享&#xff1a;规章制度、业务资料、共享信息资源集中存储、统一管理 沟通管理&#xff1a;电子邮件、手机短信、通讯录、会议协作等…

es集群安装及优化

es主节点 192.168.23.100 es节点 192.168.23.101 192.168.23.102 1.安装主节点 1.去官网下载es的yum包 官网下载地址 https://www.elastic.co/cn/downloads/elasticsearch 根据自己的需要下载对应的包 2.下载好之后把所有的包都传到从节点上&#xff0c;安装 [rootlocalho…

【DevOps-07-3】Jenkins集成Sonarqube

一、简要说明 Jenkins安装Sonarqube插件Jenkins安装和配置Sonar-Scanner信息Jenkins打包项目中,增加Sonar-Scanner代码质量扫描二、Jenkins安装Sonarqube插件 1、登录Jenkins管理后台,搜索安装Sonar-Scanner插件 Jenkins管理后台示例:http://192.168.95.131:8080/jenkins/

JetCache源码解析——配置加载

JetCache自动化配置加载 JetCache的配置加载主要是在jetcache-autoconfigure模块中完成的&#xff0c;无论是使用内存缓存LinkedHashMap和caffeine&#xff0c;亦或是通过lettuce、redisson和spring-data-redis来操作Redis服务缓存数据&#xff0c;其自动加载配置的操作基本上…

SpringCloud-高级篇(十一)

&#xff08;1&#xff09;搭建Redis-主从架构 前面我们实现了Redis的持久化&#xff0c;解决了数据安全问题&#xff0c;但是还有需要解决的问题&#xff0c;下面学习Redis的主从集群&#xff0c;解决Redis的并发能力的问题 Redis的集群往往是主从集群&#xff0c;Redsi为什么…

手势识别+人脸识别+姿态估计(关键点检测+教程+代码)

手势识别和手势关键点检测是计算机视觉领域中的一个重要研究方向,涉及到从图像或视频中检测人手的位置和姿态信息,并推断出手势的意义。以下是一些可能用到的方法和技术: 手势识别 基于深度学习的手势识别 基于深度学习的手势识别是目前最流行的方法之一。它通常使用卷积神…

虹科方案|从困境到突破:TigoLeap方案引领数据采集与优化

导读&#xff1a;在数字化工厂和智能制造的时代&#xff0c;数据已经成为优化机器和流程的关键。然而&#xff0c;如何高效地收集和处理这些数据&#xff0c;特别是在开发、部署和生产阶段&#xff0c;仍是企业面临的一大挑战。虹科TigoLeap平台&#xff0c;作为一款引领行业变…

啊哈c语言——逻辑挑战9:水仙花数

有一种三位数特别奇怪&#xff0c;这种数的“个位数的立方”加上“十位数的 立方”再加上“百位数的立方”恰好等于这个数。例如&#xff1a; 153111555333&#xff0c;我们为这种特殊的三位数起了一个很好听的名字——“水仙花数”&#xff0c;那么请你找出所有的“水仙花数”…

MIT_线性代数笔记:第 22 讲 对角化和矩阵的幂

目录 对角化矩阵 Diagonalizing a matrix S−1AS Λ矩阵的幂 Powers of A重特征值 Repeated eigenvalues差分方程 Difference equations u k 1 u_{k1} uk1​A u k u_k uk​斐波那契数列 Fibonacci sequence 本讲中将学习如何对角化含有 n 个线性无关特征向量的矩阵&#xff…

centos用yum安装mysql详细教程

1 查询安装mysql的yum源,命令如下 ls /etc/yum.repos.d/ -l 界面如下图所示&#xff0c;未显示mysql的安装源 2 安装mysql相关的yum源,例如&#xff1a; 例如&#xff1a;rpm -ivh mysql57-community-release-el7.rpm 要注意 mysql的版本和系统的版本匹配 mysql57-communi…

3D 建模中的 GLTF、USDZ 和 GLB 3D 文件格式

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 3D 建模是一个快速发展的领域&#xff0c;它使我们能够为各个行业创建…

MySQL数据库主从复制和读写分离

目录 一、MySQL主从复制和读写分离理论 &#xff08;一&#xff09;读写分离 1.什么是读写分离 2.为什么要读写分离 3.什么时候要读写分离 4.读写分离原理 5.常见MySQL 读写分离 &#xff08;1&#xff09;基于程序代码内部实现 &#xff08;2&#xff09;基于中间代理…

一文读懂傅里叶变换处理图像的原理 !!

傅里叶变换处理图像 文章目录 前言 快速傅里叶变换 第一步&#xff1a;计算二维快速傅里叶变换 第二步&#xff1a;将零频域部分移到频谱中心 编码 低通滤波器 高通滤波器 理想的滤波器 巴特沃思&#xff08;Btterworth&#xff09;滤波器 高斯&#xff08;Gaussian&#xff09…

YogaPro 16s 安装Ubuntu23.04 教程

一、 制作启动盘 官网下载Ubuntu23.04镜像&#xff0c;安装rufus软件&#xff0c;按照下图设置相应格式&#xff0c;然后点击开始即可 二、 磁盘空间分配 流程&#xff1a; 此电脑右键管理 -> 选择磁盘管理 -> 选中D盘 -> 压缩卷 -> 选择需压缩的内存即可 三、…

【AI视野·今日CV 计算机视觉论文速览 第280期】Mon, 1 Jan 2024

AI视野今日CS.CV 计算机视觉论文速览 Mon, 1 Jan 2024 Totally 46 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Learning Vision from Models Rivals Learning Vision from Data Authors Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina K…

数据结构之堆——学习笔记

1.堆的简介&#xff1a; 接下来看一下堆的建立&#xff1b; 接下来是如何在堆中插入数据以及删除数据&#xff1a; 大根堆的插入操作类似只是改变了一下大于和小于符号&#xff0c;同时插入操作的时间复杂度为O&#xff08;logn&#xff09;。 来看几个问题&#xff1a; 答案当…