CAN协议层详细介绍

CAN物理层协议介绍-CSDN博客

目录

1.  CAN的波特率及位同步

2.  位时序分解

3.  CAN的报文种类及结构

3.1  报文的种类

3.2  数据帧的结构

3.2.1  仲裁段

3.2.2  RTR位(Remote Transmission Request Bit)

3.2.3  IDE位(Identifier Extension Bit)

3.2.3  SRR位(Substitute Remote Request Bit)

3.2.4  控制段

3.2.5  数据段

3.2.6  CRC段

3.2.7  ACK段

3.2.8  帧结束


CAN的协议层则规定了通讯逻辑。

1.  CAN的波特率及位同步

        由于CAN属于异步通讯,没有时钟信号线,连接在同一个总线网络中的各个节点会像串口异步通讯那样,节点间使用约定好的波特率进行通讯,特别地, CAN还会使用“位同步”的方式来抗干扰、吸收误差,实现对总线电平信号进行正确的采样,确保通讯正常。

2.  位时序分解

        为了实现位同步,CAN协议把每一个数据位的时序分解成SS段、PTS段、PBS1段、PBS2段,这四段的长度加起来即为一个CAN数据位的长度。分解后最小的时间单位是Tq,而一个完整的位由8-25个Tq组成。

        图中表示的CAN通讯信号每一个数据位的长度为19Tq,其中SS段占1Tq,PTS段占6Tq, PBS1段占5Tq, PBS2段占7Tq。信号的采样点位于PBS1段与PBS2段之间,通过控制各段的长度,可以对采样点的位置进行偏移,以便准确地采样。

SS段(SYNC SEG)

        SS译为同步段,若通讯节点检测到总线上信号的跳变沿被包含在SS段的范围之内,则表示节点与总线的时序是同步的,当节点与总线同步时,采样点采集到的总线电平即可被确定为该位的电平。SS段的大小固定为1Tq.

PTS段(PROP SEG)

        PTS译为传播时间段,这个时间段是用于补偿网络的物理延时时间。是总线上输入比较器延时和输出驱动器延时总和的两倍。PTS段的大小可以为1-8Tq。

PBS1段(PHASE SEG1)

        PBS1译为相位缓冲段,主要用来补偿边沿阶段的误差,它的时间长度在重新同步的时候可以加长。PBS1段的初始大小可以为1-8Tq。

PBS2段(PHASE SEG2)

        PBS2这是另一个相位缓冲段,也是用来补偿边沿阶段误差的,它的时间长度在重新同步时可以缩短。PBS2段的初始大小可以为2-8Tq。

3.  CAN的报文种类及结构

        当使用CAN协议进行通讯时,需要对数据、操作命令(如读/写)以及同步信号进行打包,打包后的这些内容称为报文。

3.1  报文的种类

        在原始数据段的前面加上传输起始标签、片选(识别)标签和控制标签,在数据的尾段加上CRC校验标签、应答标签和传输结束标签,把这些内容按特定的格式打包好,就可以用一个通道表达各种信号,各种各样的标签就如同SPI中各种通道上的信号,起到了协同传输的作用。当整个数据包被传输到其它设备时,只要这些设备按格式去解读,就能还原出原始数据,这样的报文就被称为CAN的“数据帧”。

为了更有效地控制通讯,CAN一共规定了5种类型的帧。

帧用途
数据帧用于节点向外传送数据
遥控帧用于向远端节点请求数据
错误帧由于向远端节点通知校验错误,请求重新发送上一个数
过载帧用于通知远端节点:本节点尚未做好接收准备
帧间隔用于将数据帧及遥控帧与前面的帧分离开来

3.2  数据帧的结构

        数据帧以一个显性位(逻辑0)开始,以7个连续的隐性位(逻辑1)结束,在它们之间,分别有仲裁段、控制段、数据段、CRC段和ACK段。

3.2.1  仲裁段

        当同时有两个报文被发送时,总线会根据仲裁段的内容决定哪个数据包能被传输,这也是它名称的由来。

        仲裁段的内容主要为本数据帧的ID信息(标识符),数据帧具有标准格式和扩展格式两种,区别就在于ID信息的长度,标准格式的ID为11位,扩展格式的ID为29位,它在标准ID的基础上多出18位。

        在CAN协议中,ID起着重要的作用,它决定着数据帧发送的优先级,也决定着其它节点是否会接收这个数据帧。CAN协议不对挂载在它之上的节点分配优先级和地址,对总线的占有权是由信息的重要性决定的,即对于重要的信息,可给它打包上一个优先级高的ID,使它能够及时地发送出去。

        也正因为它这样的优先级分配原则,使得CAN的扩展性大大加强,在总线上增加或减少节点并不影响其它设备。

        报文的优先级,是通过对ID的仲裁来确定的。根据前面对物理层的分析我们知道如果总线上同时出现显性电平和隐性电平,总线的状态会被置为显性电平, CAN正是利用这个特性进行仲裁。

        若两个节点同时竞争CAN总线的占有权,当它们发送报文时,若首先出现隐性电平,则会失去对总线的占有权,进入接收状态。在开始阶段,两个设备发送的电平一样,所以它们一直继续发送数据。到了图中箭头所指的时序处,节点单元1发送的为隐性电平,而此时节点单元2发送的为显性电平,由于总线的“线与”特性使它表达出显示电平,因此单元2竞争总线成功,这个报文得以被继续发送出去。

简单来说就是ID越小越优先

3.2.2  RTR位(Remote Transmission Request Bit)

        译作远程传输请求位,它是用于区分数据帧和遥控帧的,当它为显性电平时表示数据帧,隐性电平时表示遥控帧。

3.2.3  IDE位(Identifier Extension Bit)

        译作标识符扩展位,它是用于区分标准格式与扩展格式,当它为显性电平时表示标准格式,隐性电平时表示扩展格式。

3.2.3  SRR位(Substitute Remote Request Bit)

        只存在于扩展格式,它用于替代标准格式中的RTR位。由于扩展帧中的SRR位为隐性位,RTR在数据帧为显性位,所以在两个ID相同的标准格式报文与扩展格式报文中,标准格式的优先级较高。

3.2.4  控制段

        在控制段中的r1和r0为保留位,默认设置为显性位。它最主要的是DLC段(DataLength Code),译为数据长度码,它由4个数据位组成,用于表示本报文中的数据段含有多少个字节,DLC段表示的数字为0~8。

3.2.5  数据段

        数据段为数据帧的核心内容,它是节点要发送的原始信息,由0-8个字节组成,MSB先行。

3.2.6  CRC段

        为了保证报文的正确传输, CAN的报文包含了一段15位的CRC校验码,一旦接收节点算出的CRC码跟接收到的CRC码不同,则它会向发送节点反馈出错信息,利用错误帧请求它重新发送。CRC部分的计算一般由CAN控制器硬件完成,出错时的处理则由软件控制最大重发数。

        在CRC校验码之后,有一个CRC界定符,它为隐性位,主要作用是把CRC校验码与后面的ACK段间隔起来。

3.2.7  ACK段

        ACK段包括一个ACK槽位,和ACK界定符位。类似12C总线,在ACK槽位中,发送节点发送的是隐性位,而接收节点则在这一位中发送显性位以示应答。在ACK槽和帧结束之间由ACK界定符间隔开。

3.2.8  帧结束

        隐性位表示结束。EOF段(End Of Frame),译为帧结束,帧结束段由发送节点发送的7个。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/301048.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【代码】Keras3.0:实现残差连接

简介 残差连接是一种非常重要的网络结构创新,最早被广泛应用于ResNet(Residual Neural Network)模型中,由何凯明等人在2015年的论文"Deep Residual Learning for Image Recognition"中提出。 核心思想 通过引入“short…

RK3399平台入门到精通系列讲解(实验篇)共享工作队列的使用

🚀返回总目录 文章目录 一、工作队列相关接口函数1.1、初始化函数1.2、调度/取消调度工作队列函数二、信号驱动 IO 实验源码2.1、Makefile2.2、驱动部分代码工作队列是实现中断下半部分的机制之一,是一种用于管理任务的数据结构或机制。它通常用于多线程,多进程或分布式系统…

频率域滤波图像复原的python实现——数字图像处理

原理 维纳滤波的原理是基于统计方法,旨在通过最小化信号的估计误差来改善信号的质量。它在处理具有噪声干扰的信号时特别有效。维纳滤波旨在从受噪声干扰的信号中恢复原始信号。它假设信号和噪声都是随机过程,并且它们的统计特性是已知的或可估计的。维…

【数据仓库与联机分析处理】数据仓库工具Hive

目录 一、Hive简介 (一)什么是Hive (二)优缺点 (三)Hive架构原理 (四)Hive 和数据库比较 二、MySQL的安装配置 三、Hive的安装配置 1、下载安装包 2、解压并改名 3、配置环…

Dockerfile的ENV

文章目录 环境总结测试测试1测试2测试3测试4测试5测试6 参考 环境 RHEL 9.3Docker Community 24.0.7 总结 如果懒得看测试的详细信息,可以直接看结果: 一条 ENV 指令可以定义多个环境变量。Dockerfile里可以包含多条 ENV 指令。环境变量的值不需要用…

崩坏:星穹铁道「V1.5攻略」绥园新增隐藏任务攻略-巡镝篇

这里是闲游盒小盒子,本期为大家带来的是1.5版本绥园地图内的隐藏任务攻略,希望能对各位开拓者有帮助。 01.小鬼心愿(赞许*1) 与青丘台入口旁的小鬼对话接取任务,带它去任务目标点即可。 02.眼一直闭(成就*…

Devtools热部署

1.添加Devtools jra <groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional> </dependency>2.添加plugin插件 <build><…

K8S--持久卷(PersistentVolume)的用法

原文网址&#xff1a;K8S--持久卷(PersistentVolume)的用法-CSDN博客 简介 本文介绍K8S的持久卷(PersistentVolume)的用法。 目标&#xff1a;用持久卷的方式将主机的磁盘与容器磁盘映射&#xff0c;安装nginx并运行。 --------------------------------------------------…

关于对象存储的若干事

引言 最近在阅读鸣嵩的一篇文章&#xff0c;数据库的下一场革命&#xff1a;S3 延迟已降至原先的 10%&#xff0c;云数据库架构该进化了 收获很多&#xff0c;过去时间也基于对象存储做过一些功能实现&#xff0c;特记录下。关于鸣嵩&#xff1a; 曹伟&#xff0c;花名鸣嵩&am…

MySQL视图 索引 面试题

一. 视图 视图&#xff1a;一种虚拟存在的表&#xff0c;行和列的数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的&#xff0c;只保存了sql逻辑&#xff0c;不保存查询结果 视图语法 -- 创建 create view 视图名 as 查询语句;-- 使用 select * f…

大数据 Yarn - 资源调度框架

Hadoop主要是由三部分组成&#xff0c;除了前面我讲过的分布式文件系统HDFS、分布式计算框架MapReduce&#xff0c;还有一个是分布式集群资源调度框架Yarn。 但是Yarn并不是随Hadoop的推出一开始就有的&#xff0c;Yarn作为分布式集群的资源调度框架&#xff0c;它的出现伴随着…

Cache伪共享

伪共享 什么是伪共享 为了解决计算机系统中主内存与CPU之间运行速度差问题&#xff0c;会在CPU与主内存之间添加一级或者多级高速缓冲存储器(Cache)。 这个Cache一般是被集成到CPU内部的&#xff0c;所以也叫CPU Cache。 在Cache内部是按行存储的&#xff0c;其中每一行称为…

springboot 房屋租赁系统

spring boot mysql mybatis 前台后端

【二】使用create-vue创建vue3的helloworld项目(推荐)

create-vue 官网&#xff1a;快速上手 | Vue.js create-vue 是 Vue3 的专用脚手架&#xff0c;使用 vite 创建 Vue3 的项目&#xff0c;也可以选择安装需要的各种插件&#xff0c;使用更简单。 1、使用方式 npm create vuelatest这个命令会安装和执行 create-vue&#xff0…

位运算--二进制中1的个数(含常见的二进制运算操作)

目录 二进制中1的个数操作 1 查看第k位的数字是否为1操作2 lowbit操作 解题代码&#xff1a; 原题链接: 二进制中1的个数 给定一个长度为 n 的数列&#xff0c;请你求出数列中每个数的二进制表示中 1 的个数。 输入格式 第一行包含整数 n 。 第二行包含 n 个整数&#xff0c…

聚道云软件连接器助力某新能源行业公司实现付款流程自动化

客户介绍&#xff1a; 某新能源行业公司是一家集研发、生产、销售新能源汽车于一体的综合性新能源企业。公司业务遍及全球多个国家和地区&#xff0c;拥有庞大的供应商网络和采购需求。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 客户痛点&#xf…

Unity中Shader面片一直面向摄像机

文章目录 前言一、实现思路1、 我们要实现模型面片一直跟着摄像机旋转&#xff0c;那么就需要用到旋转矩阵2、确定 原坐标系 和 目标坐标系3、确定旋转后坐标系基向量 二、确定旋转后 坐标系基向量 在 原坐标系 下的值1、Z轴基向量2、假设Y轴基向量 和 世界空间下 的Y轴方向一致…

科学的摇篮 - 贝尔实验室

AT&T贝尔实验室&#xff08;AT&T Bell Laboratories&#xff09;是美国电信公司AT&T的研究与开发部门&#xff0c;成立于1925年。它在20世纪的许多年里一直是科学与技术创新的重要中心&#xff0c;做出了众多重大贡献&#xff0c;并为多项科技成就奠定了基础。以下…

ReentrantLock底层原理学习二

以 ReentrantLock 作为切入点&#xff0c;来看看在这个场景中是如何使用 AQS 来实现线程的同步的 ReentrantLock 的时序图 调用 ReentrantLock 中的 lock()方法&#xff0c;源码的调用过程我使用了时序图来展现。ReentrantLock.lock() 这个是 reentrantLock 获取锁的入口 pu…

C++流媒体服务器 ZLMediaKit框架ZLToolKit源码解读

ZLMediaKit是国人开发的开源C流媒体服务器&#xff0c;同SRS一样是主流的流媒体服务器。 ZLToolKit是基于C11的高性能服务器框架&#xff0c;和ZLMediaKit是同一个作者&#xff0c;ZLMediaKit正是使用该框架开发的。 ZLMediaKit开源地址&#xff1a;https://github.com/ZLMedi…