【MySQL】数据库之Redis的持久化

目录

一、Redis的高可用

1.1什么是高可用

1.2Redis的高可用技术

1.3持久化功能

1.4Redis持久化的方式

二、Redis的持久化之RDB

2.1RDB持久化的触发方式

触发条件

RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发

(2)自动触发

 (3)其他触发

2.2bgsave执行流程

2.3启动时加载

三、Redis的持久化之AOF

3.1AOF的开启配置

3.2执行流程

3.3AOF文件重写的流程

RDB和AOF的区别

3.5启动时加载

四、Redis的性能优化

五、Redis的缓存问题和解决方案

六、如何保证MySQL和Redis的数据一致

七、Redis的优化有哪些


一、Redis的高可用

1.1什么是高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

1.2Redis的高可用技术

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。
●持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
●Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

1.3持久化功能

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

1.4Redis持久化的方式

●RDB 持久化:原理是快照的方式将 Reids在内存中的数据库记录定时保存到磁盘上。
●AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

二、Redis的持久化之RDB

2.1RDB持久化的触发方式

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

触发条件

  • RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发

save命令和bgsave命令都可以生成RDB文件。

  • save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
  • 而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
  • bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

(2)自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave进行快照。

vim /usr/local/redis/conf/redis.conf
--433行--RDB默认保存策略
# save 3600 1 300 100 60 10000
#表示以下三个save条件满足任意一个时,都会引起bgsave的调用
save 3600 1 :当时间到3600秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave

--454行--是否开启RDB文件压缩
rdbcompression yes
--481行--指定RDB文件名
dbfilename dump.rdb
--504行--指定RDB文件和AOF文件所在目录
dir /usr/local/redis/data

 (3)其他触发

除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

总结

RDB的自动触发有三种方式

1、达到save规则

2、shutdown命令

3、主从复制,从节点执行全量复制操作,主节点会自动触发bgsave并将rdb文件传给从节点

2.2bgsave执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息

2.3启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。

但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;

即使AOF开启,且无AOF文件,Redis也不会载入RDB文件

只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

三、Redis的持久化之AOF

3.1AOF的开启配置

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录(与mysql的binlog类似); 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,
AOF的实时性更好,因此已成为主流的持久化方案。

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /usr/local/redis/conf/redis.conf
--1380行--修改,开启AOF
appendonly yes
--1407行--指定AOF文件名称
appendfilename "appendonly.aof"
--1505行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes

 

 

3.2执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF的执行流程包括:
●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

●appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

#文件重写之所以能够压缩AOF文件,原因在于:

  • ●过期的数据不再写入文件
  • ●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
  • ●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

#文件重写的触发,分为手动触发和自动触发:

  • ●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
  • ●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
  • 一般注释,关闭!!!!!!

3.3AOF文件重写的流程

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。 
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

总结

RDB和AOF的区别

1、工作方式:RDB是定时将内存中的数据快照,压缩保存到硬盘中;而AOF则是以命令追加的形式,将命令写到缓冲区,然后再根据文件同步策略将文件写入和同步到磁盘中;

2、实时性:RDB的实时性不如AOF

3、磁盘占用:RDB的磁盘占用较少,AOF的文件体积大;

4、IO性能影响:RDB对磁盘IO性能影响更小

5、兼容性:RDB的保存格式在每个版本中不一定兼容,但是AOF是以纯文本格式保存,在所有版本上兼容

6、恢复速度:RDB比AOF更易恢复

RDB持久化和AOF持久化
区别:
1、持久化方式:RDB定时将内存中数据快照,并压缩保存在硬盘;AOF是通过追加的方式,将Redis的写操作命令记录到AOF文件中

2、工作方式:
RDB的执行流程:可以手动(bgsave命令),还可以自动触发(①满足save指令配置的条件,②主从复制,从节点首次同步,③执行shutdown时会自动触发),文件名:dump.rdb
AOF的执行流程:命令追加(写命令追加到aof_buf缓冲区),文件写入和同步(appendfsync everysec|always|no),文件名:appendonly.aof;文件重写(定时bgrewriteaof命令手动触发,关闭自动触发操作),减少aof文件占用大小和加快文件恢复速度,执行

3、优缺点:
RDB持久化保存的文件占用空间小,网络传输快,恢复比AOF速度快,性能影响也比AOF小;缺点:实时性不如AOF,兼容性较差,持久化期间在fork子进程时会阻塞Redis父进程
AOF持久化的实时性比RDB更好,数据安全性高,支持秒级持久化,并且保存格式为文本格式,兼容性比较好。
缺点:持久化保存的文件占用磁盘空间更大,恢复速度更慢,性能影响也更大,AOF文件重写期间,在fork子进程的时候也会阻塞Redis父进程

3.5启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。 

四、Redis的性能优化

----- 内存碎片率 -----
mem_fragmentation_ratio:内存碎片率。mem_fragmentation_ratio = used_memory_rss / used_memory
used_memory_rss:是Redis向操作系统申请的内存。
used_memory:是Redis中的数据占用的内存。
used_memory_peak:redis内存使用的峰值。

 #内存碎片如何产生的?
Redis内部有自己的内存管理器,为了提高内存使用的效率,来对内存的申请和释放进行管理。
Redis中的值删除的时候,并没有把内存直接释放,交还给操作系统,而是交给了Redis内部有内存管理器。
Redis中申请内存的时候,也是先看自己的内存管理器中是否有足够的内存可用。
Redis的这种机制,提高了内存的使用率,但是会使Redis中有部分自己没在用,却不释放的内存,导致了内存碎片的发生。

#跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
●内存碎片率在1到1.5之间是正常的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis内存占用。

#解决碎片率大的问题:
如果你的Redis版本是4.0以下的,需要在 redis-cli 工具上输入 shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。Redis服务器重启后,Redis会将没用的内存归还给操作系统,碎片率会降下来。

Redis4.0版本开始,可以在不重启的情况下,线上整理内存碎片。
config set activedefrag yes     #自动碎片清理,内存就会自动清理了。
memory purge					#手动碎片清理

这是设置redis最大的内存空间,如果不设置会把所有的物理内存都给到redis  容易把系统搞崩溃 

----- 内存使用率 -----
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

这样不好,因为swap空间毕竟还是磁盘,读写速度慢,所以当然不想用swap空间

#避免内存交换发生的方法:
●针对缓存数据大小选择安装 Redis 实例
●尽可能的使用Hash数据结构存储,因为空间占用小
●设置key的过期时间,过期释放缓存,避免占用空间大

 

 ----- 内回收key -----
内存数据淘汰策略,保证合理分配redis有限的内存资源。当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。

●maxmemory
建议必须设置,否则,将内存占满,造成服务器宕机。
设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。
如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。
但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明redis集群有主从),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素。

●maxmemory-samples
设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,redis默认会检查这么多个key并选择其中LRU的那个。
一般设置3到7的数字,数值越小样本越不准确,但性能消耗越小。

●maxclients
设置redis同时可以与多少个客户端进行连接。
默认情况下为10000个客户端。
如果达到了此限制,redis则会拒绝新的连接请求,并且向这些连接请求方发出“max number of clients reached”以作回应。

五、Redis的缓存问题和解决方案

redis的三大缓存问题
正常情况下,大部分的访问请求应该是先被redis响应的,在redis那里得不到响应的小部分访问请求才会去请求MySQL数据库获取数据,这样MySQL数据库的负载压力是非常小的,且可以正常工作。缓存雪崩/穿透/击穿三大问题的根本原因在于redis缓存命中率下降,大量请求会直接发送给MySQL数据库,导致MySQL数据库压力过大而崩溃。


缓存雪崩:redis中大量缓存key集体过期
缓存穿透:大量请求访问redis和MySQL都不存在的资源
缓存击穿:redis中一个热点key过期,此时又有大量用户访问这个热点key(redis-cli --hotkeys 可用于查找热Key)


缓存雪崩的解决方案:

  • 使用随机数设置key的过期时间,防止集体过期
  • 设置缓存标记,如果缓存过期,则自动更新缓存
  • 数据库使用排他锁,实现加锁等待


缓存穿透的解决方案:

  • 对空值也进行缓存
  • 使用布隆过滤器进行判断拦截一定不存在的无效请求
  • 使用脚本实时监控,进行黑名单限制


缓存击穿的解决方案:

  • 预先对热点数据进行缓存预热
  • 监控数据,实时调整过期时长
  • 数据库使用排他锁,实现加锁等待

六、如何保证MySQL和Redis的数据一致

  • 读取数据时,先从redis读取数据,如果redis中没有,再从MySQL中读取,并将读取到的数据同步到redis缓存中。
  • 更新数据时,先更新MySQL数据库,再更新redis缓存
  • 删除数据时,先删除redis缓存,再删除MySQL数据库
  • 对于一些关键数据,可以使用MySQL的触发器来实现同步更新redis缓存。也可以使用定时任务,定时自动进行缓存预热,来定期同步MySQL和redis的数据。

七、Redis的优化有哪些

  • 1)设置 config set activedefrag yes 开启内存碎片自动清理,或者定时执行 memory purge 清理内存碎片
  • 2)尽可能使用 hash 数据类型存储数据。因为 hash 类型的一个 key 可包含多个字段,该类型的数据占用空间较小
  • 3)建议给 key 设置过期时间
  • 4)精简 key 的键名和键值,控制 key 占用空间的大小,避免 bigkey 的产生(redis-cli --bigkeys 可用于查找bigKey)
  • 5)修改配置 maxmemory 指定redis可占用的最大内存大小
  •    修改配置 maxmemory-policy 指定内存数据淘汰策略(key的回收策略),实现保证内存使用率不超过最大内存
  •    修改配置 maxmemory-samples 指定内存数据淘汰策略的样本数量,一般为3~7,值越大样本越精确
  •    修改配置 maxclients 指定最大客户端连接数
  •    修改配置 tcp-backlog 指定最大连接排队数
  •    修改配置 timeout 指定连接超时时间
  •    修改配置 lazyfree-lazy-expire yes  设置惰性删除,将删除过期key的操作放在后台中去执行,避免阻塞主线程
  •    修改配置 no-appendfsync-on-rewrite yes  设置AOF文件重写期间,AOF后台子进程不进行刷盘操作,避免AOF重写和fsync竞争磁盘IO资源,导致redis延迟增加
  • 6)设置AOF持久化和主从复制来备份数据,采用哨兵或集群模式实现redis集群的高可用
  • 7)建议设置 config set requirepass 或 修改配置 requirepass 来设置 redis 密码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/302458.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

5 - 视图|存储过程

视图|存储过程 视图视图基本使用使用视图视图进阶 存储过程创建存储过程存储过程进阶存储过程参数循环结构 视图 视图是虚拟存在的表 表头下的数据在真表里 表头下的数据存储在创建视图时 在select命令访问的真表里 优点: 安全数据独立简单 用户无需关…

AArch64 memory management学习(二)

提示 该博客主要为个人学习,通过阅读官网手册整理而来(个人觉得阅读官网的英文文档非常有助于理解各个IP特性)。若有不对之处请参考参考文档,以官网文档为准。AArch64 memory management学习一共分为两章,这是第二章。…

Ubuntu下AI4Green开源ELN服务的简单部署

主部署程序:AI4Green 配置参考这篇文档:AI4Green开源ELN(电子实验记录本)-CSDN博客 流量转发和负载均衡:使用Nginx 配置参考这篇文档:Nginx负载均衡-CSDN博客 SSL配置部分参考这篇文档: 设置…

python自动化运维管理拓扑

1、简介 这部分实验是属于python自动化管理拓扑、配置拓扑的实验。模拟企业配置中,使用python自动化批量管理网络设备,减少人力物力时间成本的场景。 2、实验环境 ensp软件centos。 ensp中需要配置好cloud,连接本地的vmnet8虚拟网卡&…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)解析请求头并存储

一、解析请求头并存储 ### 解析请求头数据 1.数据存储在对应的Buffer结构内存块中。解析时,需要将readPos更新到请求头的起始位置parseHttpRequestLine函数中已经为解析请求头做好了准备。 回顾一下parseHttpRequestLine函数: bool parseHttpRequestLine(struct…

802.1X(HCIP)

目录 一、802.1X协议概述 1、802.1X协议概述 2、802.1X基本概念 认证模式 认证方式 端口控制方式 3、802.1X认证触发机制 客户端主动触发 设备端主动触发(用于支持不能主动发送EAPOL-Start报文的客户端) 4、EAP体系结构 5、EAP报文封装结构 6…

RT-Thread: 基于STM32CubeMX配置驱STM32驱动的USB虚拟串口调试

关键词:USB 虚拟串口 USB虚拟串口,RT-Thread Studio,STM32 说明: 1:文档记录 STM32F103系列基于 RT-Thread 系统的 USB虚拟串口的开启及数据收发应用流程介绍。 2:本文以STM32F103C8T6型号做测试&#x…

K8S中的Pod到底是什么

01 概述 In earlier chapters we discussed how you might go about containerizing your application, but in real-world deployments of containerized applications you will often want to colocate multiple applications into a single atomic unit, scheduled onto a …

USB定位检测

拍摄要求: 1、精度要求:检测USB接口内芯位置是否处于接口的中心,检测精度0.05mm。 2.速度要求:一分钟检测3个产品;一次一个产品; 拍摄思路: 如图,想要检测USB内芯位置是否处于接口的…

信号的互相关计算及时延估计

1. 信号的互相关计算 互相关反映向量x和移位(滞后)向量y之间的相似性。 最直观的解释是:互相关的作用是为了找到信号在哪一时刻与另一信号最像(另一信号为本身时就是自相关)! 滑动求互相关(图…

软件测试|Linux基础教程:ln命令与软链接和硬链接

简介 在Linux系统中,ln命令是一个非常有用的工具,用于创建链接(link),将一个文件或目录链接到另一个位置。链接允许一个文件或目录可以同时存在于多个位置,而不会占用额外的磁盘空间。ln命令支持创建硬链接…

SAP 物料读取基本数据文本与检验文本READ_TEXT

1. 读取基本数据文本 使用函数 READ_TEXT 2. 读取检验文本

【金猿CIO展】是石科技CIO侯建业:算力产业赋能,促进数字经济建设

‍ 侯建业 本文由是石科技CIO侯建业撰写并投递参与“数据猿年度金猿策划活动——2023大数据产业年度优秀CIO榜单及奖项”评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 是石科技(江苏)有限公司成立于2021年,由国家超级计算无锡中心与…

CSDN博客重新更新

说来惭愧,好久没更新博客文章,导致个人博客网站:https://lenky.info/ 所在的网络空间和域名都过期了都没发觉,直到有个同事在Dim上问我我的个人博客为啥打不开了。。。幸好之前有做整站备份,后续慢慢把内容都迁回CSDN上…

【Docker】可以将TA用于什么,简单了解下

欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是是《Docker容器》序列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深…

独立式键盘的按键功能扩展:“以一当四“

#include<reg51.h> // 包含51单片机寄存器定义的头文件 unsigned char ID; //储存流水灯的流动速度 sbit S1P1^4; //位定义S1为P1.4 /************************************************************** 函数功能&#xff1a;延时子程序 ***********…

卷积神经网络|迁移学习-猫狗分类完整代码实现

还记得这篇文章吗&#xff1f;迁移学习|代码实现 在这篇文章中&#xff0c;我们知道了在构建模型时&#xff0c;可以借助一些非常有名的模型&#xff0c;这些模型在ImageNet数据集上早已经得到了检验。 同时torchvision模块也提供了预训练好的模型。我们只需稍作修改&#xf…

我的阿里云服务器被攻击了

服务器被DDoS攻击最恶心&#xff0c;尤其是阿里云的服务器受攻击最频繁&#xff0c;因为黑客都知道阿里云服务器防御低&#xff0c;一但被攻击就会进入黑洞清洗&#xff0c;轻的IP停止半小时&#xff0c;重的停两个至24小时&#xff0c;给网站带来很严重的损失。而处理 ddos 攻…

Spring Cloud Gateway整合Sentinel

日升时奋斗&#xff0c;日落时自省 目录 1、实现整合 1.1、添加框架依赖 1.2、设置配置文件 1.3、设置限流和熔断规则 1.3.1、限流配置 Route ID限流配置 API限流配置 1.3.2、熔断配置 2、实现原理 先前Sentinel针对是业务微服务&#xff0c;没有整合Sentinel到Spring…

若依CRUD搬砖开始,Java小白入门(十)

背景 经过囫囵吞枣的学习若依框架&#xff0c;对于ruoyi-framework&#xff0c;common&#xff0c;安全&#xff0c;代码生成等模块都看了一圈&#xff0c;剩余的调度模块&#xff0c;这个暂时不深入&#xff0c;剩余的是ruoyi-system&#xff0c;就是用mybatis完成的&#xf…
最新文章