e2studio开发三轴加速度计LIS2DW12(1)----轮询获取加速度数据

e2studio开发三轴加速度计LIS2DW12.1--轮询获取加速度数据

  • 概述
  • 视频教学
  • 样品申请
  • 源码下载
  • 通信模式
  • 管脚定义
  • IIC通信模式
  • 速率
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • IIC属性配置
  • 初始换管脚
  • IIC配置
  • R_IIC_MASTER_Open()函数原型
  • R_IIC_MASTER_Write()函数原型
  • R_IIC_MASTER_Read()函数原型
  • sci_i2c_master_callback()回调函数
  • 参考程序
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置传感器的量程
  • 配置过滤器链
  • 配置电源模式
  • 设置输出数据速率
  • 轮询获取加速度
  • 演示

概述

本文将介绍如何驱动和利用LIS2DW12传感器,实现精确的运动感应功能。
IS2DW12是一款高性能、超低功耗的三轴线性加速度计,属于“femto”系列,利用了成熟的微机械加速度计制造工艺。这个传感器提供可选择的全量程±2g/±4g/±8g/±16g,能够以1.6 Hz至1600 Hz的数据输出率测量加速度。它包含了一个32级的先进先出(FIFO)缓冲区,用于存储数据,以减少主处理器的干预需求。
此外,LIS2DW12具备自测功能,可在最终应用中验证传感器功能,并集成了一个处理运动和加速度检测的内部引擎。这包括自由落体、唤醒、敲击识别、活动/静止监测、静止/运动检测、纵向/横向检测以及6D/4D定向等功能。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

通信模式

对于LIS2DW12,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。

在这里插入图片描述

在CS管脚为1的时候,为IIC模式。


本文使用的板子原理图如下所示。
在这里插入图片描述

管脚定义

在这里插入图片描述

IIC通信模式

在使用IIC通讯模式的时候,SA0是用来控制IIC的地址位的。
对于IIC的地址,可以通过SDO/SA0引脚修改。SDO/SA0引脚可以用来修改设备地址的最低有效位。如果SDO/SA0引脚连接到电源电压,LSb(最低有效位)为’1’(地址0011001b);否则,如果SDO/SA0引脚连接到地线,LSb的值为’0’(地址0011000b)。

在这里插入图片描述
对应的IIC接口如下所示。
主要使用的管脚为CS、SCL、SDA、SA0。

在这里插入图片描述

速率

该模块支持的速度为普通模式(100k)和快速模式(400k)。
在这里插入图片描述

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述
需要修改XTAL为12M。

在这里插入图片描述

UART配置

在这里插入图片描述
点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

 /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);


回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

IIC属性配置

查看手册,可以得知LIS2DW12的IIC地址为“0011000” 或者 “0011001”,即0x18或0x19。

在这里插入图片描述

初始换管脚

由于需要向LIS2DW12_I2C_ADD_L写入以及为IIC模式。

在这里插入图片描述
在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。

在这里插入图片描述

配置SA0为低电平。

在这里插入图片描述

    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_00, BSP_IO_LEVEL_HIGH);
    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, BSP_IO_LEVEL_LOW);

IIC配置

配置RA4M2的I2C接口,使其作为I2C master进行通信。
查看开发板原理图,对应的IIC为P407和P408。

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

在这里插入图片描述

设置IIC的配置,需要注意从机的地址。

在这里插入图片描述

R_IIC_MASTER_Open()函数原型

R_IIC_MASTER_Open()函数为执行IIC初始化,开启配置如下所示。

    /* Initialize the I2C module */
    err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函数原型

在这里插入图片描述
R_IIC_MASTER_Write()函数是向IIC设备中写入数据,写入格式如下所示。

    err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, &reg, 1, true);
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函数原型

在这里插入图片描述

R_SCI_I2C_Read()函数是向IIC设备中读取数据,读取格式如下所示。

    /* Read data from I2C slave */
    err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false);
    assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回调函数

对于数据是否发送完毕,可以查看是否获取到I2C_MASTER_EVENT_TX_COMPLETE字段。

在这里插入图片描述

/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{
    i2c_event = I2C_MASTER_EVENT_ABORTED;
    if (NULL != p_args)
    {
        /* capture callback event for validating the i2c transfer event*/
        i2c_event = p_args->event;
    }
}

参考程序

https://github.com/STMicroelectronics/lis2dw12-pid

获取ID

我们可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x44。
在这里插入图片描述

lis2dw12_device_id_get为获取函数。
在这里插入图片描述

对应的获取ID驱动程序,如下所示。

       /* Initialize mems driver interface */
       stmdev_ctx_t dev_ctx;
       dev_ctx.write_reg = platform_write;
       dev_ctx.read_reg = platform_read;
       dev_ctx.handle = &SENSOR_BUS;
       /* Wait sensor boot time */
       platform_delay(BOOT_TIME);
       /* Check device ID */
       lis2dw12_device_id_get(&dev_ctx, &whoamI);
       printf("LIS2DW12_ID=0x%x,whoamI=0x%x\n",LIS2DW12_ID,whoamI);
       if (whoamI != LIS2DW12_ID)
           while (1) {
         /* manage here device not found */
           }

复位操作

可以向CTRL2 (21h)的SOFT_RESET寄存器写入1进行复位。

在这里插入图片描述
lis2dw12_reset_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Restore default configuration */
  lis2dw12_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2dw12_reset_get(&dev_ctx, &rst);
  } while (rst);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL2 (21h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

/* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

设置传感器的量程

FS[1:0] - 全量程选择:这两个位用于设置传感器的量程。量程决定了传感器可以测量的最大加速度值。例如,量程可以设置为±2g、±4g、±8g或±16g。这允许用户根据应用的特定需求调整传感器的灵敏度。
在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);

配置过滤器链

lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);:设置加速度计输出的过滤器路径。这里选择了输出上的低通滤波器(LPF),用于去除高频噪声。
lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_4);:设置过滤器的带宽。这里的设置是将输出数据率(ODR)除以4,进一步决定了滤波器的截止频率。

配置电源模式

lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_HIGH_PERFORMANCE);:这个调用设置加速度计的电源模式为高性能模式。这通常意味着更高的功耗,但提供更精确的测量。

设置输出数据速率

lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_ODR_25Hz);:设置加速度计的输出数据速率为每秒25次。输出数据速率决定了传感器多久采集一次数据,并影响数据的实时性和功耗。

  /* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);
  /* Configure filtering chain
   * Accelerometer - filter path / bandwidth
   */
  lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);
  lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_4);
  /* Configure power mode */
  lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_HIGH_PERFORMANCE);
  /* Set Output Data Rate */
  lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_ODR_25Hz);

轮询获取加速度

检查新数据是否可用:
lis2dw12_flag_data_ready_get(&dev_ctx, &reg);:这个函数调用检查加速度计是否有新的数据可读。如果有新数据,reg 变量将被设置为非零值。
主要为读取STATUS (27h)的DRDY位。
在这里插入图片描述
如果 reg 是非零的,说明有新的加速度数据可读。
lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);:这个函数调用实际读取加速度计的原始数据,并存储在 data_raw_acceleration 数组中。
数据在28h-2Dh中。

在这里插入图片描述

在这里插入图片描述
加速度数据首先以原始格式(通常是整数)读取,然后需要转换为更有意义的单位,如毫重力(mg)。这里的转换函数 lis2dw12_from_fs2_to_mg() 根据加速度计的量程(这里假设为±2g)将原始数据转换为毫重力单位。
acceleration_mg[0] = lis2dw12_from_fs2_to_mg(data_raw_acceleration[0]); 等三行代码分别转换 X、Y、Z 轴的加速度数据。

在这里插入图片描述

● LIS2DW12 加速度计通常会有一个固定的位分辨率,比如 16 位(即输出值是一个 16 位的整数)。这意味着加速度计可以输出的不同值的总数是 2^16=65536。这些值均匀地分布在 -2g 到 +2g 的范围内。
● 因此,这个范围(4g 或者 4000 mg)被分成了 65536 个步长。
● 每个步长的大小是 4000 mg/65536≈0.061 mg/LSB
所以,函数中的乘法 ((float_t)lsb) * 0.061f 是将原始的整数值转换为以毫重力(mg)为单位的加速度值。这个转换对于将加速度计的原始读数转换为实际的物理测量值是必需的。

       while (1)
       {
         uint8_t reg;
         /* Read output only if new value is available */
         lis2dw12_flag_data_ready_get(&dev_ctx, &reg);

         if (reg) {
           /* Read acceleration data */
           memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
           lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
           //acceleration_mg[0] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[0]);
           //acceleration_mg[1] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[1]);
           //acceleration_mg[2] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[2]);
           acceleration_mg[0] = lis2dw12_from_fs2_to_mg(
                                  data_raw_acceleration[0]);
           acceleration_mg[1] = lis2dw12_from_fs2_to_mg(
                                  data_raw_acceleration[1]);
           acceleration_mg[2] = lis2dw12_from_fs2_to_mg(
                                  data_raw_acceleration[2]);
           printf("Acceleration [mg]:X=%4.2f\tY=%4.2f\tZ=%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
         }
         R_BSP_SoftwareDelay(100, BSP_DELAY_UNITS_MILLISECONDS);
       }

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/303461.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大数据Doris(五十二):SQL函数之数学函数

文章目录 SQL函数之数学函数 一、abs(double a)

基于多反应堆的高并发服务器【C/C++/Reactor】(中)HttpRequest模块 解析http请求协议

一、HTTP响应报文格式 HTTP/1.1 200 OK Bdpagetype: 1 Bdqid: 0xf3c9743300024ee4 Cache-Control: private Connection: keep-alive Content-Encoding: gzip Content-Type: text/html;charsetutf-8 Date: Fri, 26 Feb 2021 08:44:35 GMT Expires: Fri, 26 Feb 2021 08:44:35 GM…

系列三十五、获取Excel中的总记录数

一、获取Excel中的总记录数 1.1、概述 使用EasyExcel开发进行文件上传时&#xff0c;通常会碰到一个问题&#xff0c;那就是Excel中的记录数太多&#xff0c;使用传统的方案进行文件上传&#xff0c;很容易就超时了&#xff0c;这时可以通过对用户上传的Excel中的数量进行限制…

闰年问题-第11届蓝桥杯选拔赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第25讲。 闰年问题&#xf…

swaggerUI不好用,试试这个openapiUI?

1.背景 由于长期使用 swaggerUI 工具&#xff0c;它的轻量风格个人觉得还是不错的&#xff0c;但是它的整体使用体验确实不好&#xff0c;用过的可能都有体会&#xff0c;这里就不一一列举了&#xff08;由于语言表达能力有限&#xff0c;手动&#x1f436;保命&#xff0c;毕…

1.7数算PPT选择汇总,PTA选择汇总,计算后缀表达式,中缀转后缀、前缀、快速排序

PTA选择汇总 在第一个位置后插入&#xff0c;注意是在后面插入&#xff0c;而不是前面&#xff1b;要移动49&#xff0c;为50-I&#xff0c;第25个的话&#xff0c;移25个 如果是插在前面&#xff0c;就移动50&#xff0c;N-I1&#xff0c;注意是插在前面还是后面 删第一个&a…

JS-基础语法(一)

JavaScript简单介绍 变量 常量 数据类型 类型转换 案例 1.JavaScript简单介绍 JavaScript 是什么&#xff1f; 是一种运行在客户端&#xff08;浏览器&#xff09;的编程语言&#xff0c;可以实现人机交互效果。 JS的作用 JavaScript的组成 JSECMAScript( 基础语法 )…

变换器电感饱和以及电流变大电感变小原因分析

电感电流变大电感值变小 在一个DC-DC电源转换器中&#xff0c;电感器的电流与其电感量是有关系的。当电感器的电流增大时&#xff0c;其电感量通常会变小。 电感器的电感量&#xff08;L&#xff09;是指在单位电流变化率下&#xff0c;电感器两端的电压变化的比例。根据电感…

【JAVA GUI+MYSQL]社团信息管理系统

本社团信息管理系统主要实现登录注册、管理员信息管理、社团用户信息管理、用户申请信息管理功能模块。 目录 &#xff11;&#xff0e;系统主要功能介绍 &#xff12;&#xff0e; 数据库概念模型设计 3.具体功能模块的实现 3.1模型类 3.1.1Student.java 3.1.2User .j…

高通平台开发系列讲解(USB篇)Ubuntu 下如何使用模块

文章目录 一、查看VID、PID二、adb添加2.1、在udev下添加模块的VID2.2、重启adb服务三、虚拟串口添加(AT、Diag)沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要图解高通平台上位机使用方法 一、查看VID、PID 在ubuntu下使用模块进行AT指令发送,Diag等串…

【QML COOK】- 003-处理鼠标事件

1. 编辑main.qml import QtQuickWindow {width: 800height: 800visible: truetitle: qsTr("Hello World")Image {id: backgroudanchors.fill: parentsource: "qrc:/Resources/Images/arrow.png"}MouseArea {anchors.fill: parentonClicked: backgroud.rot…

docker run 命令详解

一、前言 Docker容器是一个开源的应用容器引擎&#xff0c;让开发者可以以统一的方式打包他们的应用以及依赖包到一个可移植的容器中&#xff0c;然后发布到任何安装了Docker引擎的服务器上&#xff08;包括流行的Linux机器、Windows机器&#xff09;&#xff0c;也可以实现虚拟…

【hcie-cloud】【20】容器详解【容器介绍,容器工作机制、容器常用命令说明】【上】

文章目录 前言容器是什么虚拟化技术的四个特点容器也是一种虚拟化技术容器是怎么实现虚拟化的&#xff1f;容器对比虚拟机有哪些优势&#xff1f;容器对比虚拟机有哪些不足&#xff1f;容器不仅是一种虚拟化技术&#xff0c;更重要的是一种应用打包机制容器提供的是PaaS服务常见…

SSH远程访问出现Permission denied(password)解决方法

首先&#xff0c;这个不是密码输错了的问题&#xff1b; 1、在主机先ping一下服务器 ping XXX.XXX.XX.XXX (服务器ip地址) 如果pin成功了&#xff0c;说明可以进行连接 查看服务器的ip ifconfig2、主机连接服务器 &#xff08;服务器的ip&#xff09; ssh testXXX.XXX.XX.…

Java中SpringBoot组件集成接入【MQTT中间件】

Java中SpringBoot组件集成接入【MQTT中间件】 1.MQTT介绍2.搭建MQTT服务器1.Windows2.Ubuntu3.Docker4.其他方式3.mqtt可视化客户端MQTTX及快速使用教程4.SpringBoot接入MQTT1、maven依赖2、MQTT配置3、MQTT组件具体代码1.定义通道名字2.消息发布器3.MQTT配置、生产者、消费者4…

线扫相机品牌汇总(国外+国内)

线扫相机品牌汇总(国外+国内) 行者 ​ 热爱生活 22 人赞同了该文章 线扫相机也叫做线阵相机,和面阵相机一样,都是重要的工业相机。 线扫相机正如其名字那样,拍照时像扫描一样,相机和被拍照物体有相对匀速运动。 Perhaps the most common example of line scan imagin…

如何顺滑使用华为云编译构建平台?

这两年平台构建服务需求越来越大&#xff0c;却一直苦于找不到一些指南&#xff0c; 这里特意写了一篇&#xff0c; 对在学习代码阶段和新手程序员朋友也蛮友好&#xff0c; 配置真的也不难&#xff0c; 也特别适合想尝试从0到1做个APP的朋友了。 以华为云的CodeArts Build为例…

Mac/Linux虚拟机CrossOver2024新版下载使用教程

CrossOver不像Parallels或VMware的模拟器&#xff0c;而是实实在在Mac OS X系统上运行的一个软件&#xff0c;该软件可以让用户在mac是上直接运行windows软件&#xff0c;本文为大家带来的是CrossOver Mac版安装教程&#xff01; CrossOver Mac-安装包下载如下&#xff1a;http…

ubuntu系统(9):ubuntu 20.02安装pydot

目录 警告信息 1、确保安装了Python和pip 2、安装Graphviz软件包 3、pip安装pydot 验证 在gem5中&#xff0c;pydot库用于生成图形化输出&#xff0c;特别是生成.dot文件和相关的图像文件&#xff0c;如PDF、PNG等。它与gem5结合使用的一个常见用途是生成系统结构图、内存…

MFC结合GDI+

MFC结合GDI 创建一个空的MFC界面&#xff0c;在确定按钮函数里进行画图&#xff1a; 1、包含头文件与库 在stdafx.h中加入以下三行代码&#xff1a; #include "gdiplus.h" using namespace Gdiplus; #pragma comment(lib, "gdiplus.lib")2、安装GDI 在…