大创项目推荐 深度学习手势检测与识别算法 - opencv python

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像

skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽

# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): 
	for j in  range(0, y):
		if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):
			skin2[i][j] =  255
		else:
			skin2[i][j] =  0

cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块

# Laplace算子
suanzi1 = np.array([[0, 1, 0],  
                    [1,-4, 1],
                    [0, 1, 0]])

# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],
                    [1,-8, 1],
                    [1, 1, 1]])

# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)

# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")

# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255

# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255

# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/309706.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式-策略模式+单例模式+工厂模式 减少 if else

目录 一. 需求一. 区分entity二. 接口三. 邮件发送类四. 邮件发送的聚合工厂类五. 模拟邮件发送 一. 需求 根据前台传入的code&#xff0c;后台发送不同平台的邮件&#xff0c;发送QQ邮件&#xff0c;163邮件&#xff0c;Gmail邮件等。 一. 区分entity public class MailKbn…

使用懒加载 + 零拷贝后,程序的秒开率提升至99.99%

目录 一、5秒钟加载一个页面的真相二、优化四步走1、“懒加载”2、线上显示 就读取一个文件&#xff0c;为什么会慢呢&#xff1f; 三、先从上帝视角&#xff0c;了解一下啥子是IO流四、写个栗子&#xff0c;测试一下1、通过字符输入流FileReader读取2、通过缓冲流BufferedRea…

Qt QPushButton按钮控件

文章目录 1 属性和方法1.1 文本1.2 图标1.3 样式表1.4 信号 2 实例2.1 布局2.2 添加图标2.3 添加样式表2.4 代码实现 1 属性和方法 按钮除了可以设置显示文本之外&#xff0c;还可以设置图标 1.1 文本 可以获取和设置按钮上显示的文本 // 获取和设置按钮的文本 QString tex…

Apache ActiveMQ RCE CNVD-2023-69477 CVE-2023-46604

漏洞简介 Apache ActiveMQ官方发布新版本&#xff0c;修复了一个远程代码执行漏洞&#xff0c;攻击者可构造恶意请求通过Apache ActiveMQ的61616端口发送恶意数据导致远程代码执行&#xff0c;从而完全控制Apache ActiveMQ服务器。 影响版本 Apache ActiveMQ 5.18.0 before 5.1…

四次挥手的详细过程以及个人见解

SYN同步SYN表示进行一个连接请求 ACK确认位ACK1确认有效ACKO确认无效 ack确认号&#xff0c;客户端的序列号(seq)1 seq序列号&#xff0c;序列号是随机生成的随机数 FIN表示断开连接并且会停止向服务端发数据 详细过程如图&#xff1a; 第一次:客户端向服务器发出关闭请求…

构建中国人自己的私人GPT

创作不易&#xff0c;请大家多鼓励支持。 在现实生活中&#xff0c;很多人的资料是不愿意公布在互联网上的&#xff0c;但是我们又要使用人工智能的能力帮我们处理文件、做决策、执行命令那怎么办呢&#xff1f;于是我们构建自己或公司的私人GPT变得非常重要。 先看效果 一、…

YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)

一、本文介绍 本文给大家带来的改进机制是针对性的改进,针对于小目标检测增加P2层,针对于大目标检测增加P6层利用DynamicHead(原版本一比一复现,全网独一份,不同于网上魔改版本)进行检测,其中我们增加P2层其拥有更高的分辨率,这使得模型能够更好地捕捉到小尺寸目标的细节…

element ui el-table展示列表,结合分页+过滤功能

vueelement-ui实现的列表展示&#xff0c;列表分页&#xff0c;列表筛选功能 1&#xff0c;分页器 el-table模块下面是分页器代码 <el-pagination></el-pagination> <el-table></el-table> <!-- 分页器 --><div class"block" st…

IO进程线程day5

1.实现互斥机制 #include <head.h>char buf[128]; //全局数组&#xff0c;临界资源//1、创建一个互斥锁 pthread_mutex_t mutex;//定义分支线程 void *task(void *arg) {while(1){//3、获取锁资源pthread_mutex_lock(&mutex);printf("分支线程中&…

论文阅读《Generalizing Face Forgery Detection with High-frequency Features》

高频噪声分析会过滤掉图像的颜色内容信息。 本文设计了三个模块来充分利用高频特征&#xff0c; 1.多尺度高频特征提取模块 2.双跨模态注意模块 3.残差引导空间注意模块&#xff08;也在一定程度上体现了两个模态的交互&#xff09; SRM是用于过滤图像的高频噪声 输入的图…

AlexNet论文精读

1:该论文解决了什么问题&#xff1f; 图像分类问题 2&#xff1a;该论文的创新点&#xff1f; 使用了大的深的卷积神经网络进行图像分类&#xff1b;采用了两块GPU进行分布式训练&#xff1b;采用了Relu进行训练加速&#xff1b;采用局部归一化提高模型泛化能力&#xff1b;…

Linux 基于 rsync 实现集群分发脚本 xsync

一、rsync 简介 rsync&#xff08;remote synchronize&#xff09;是 Liunx/Unix 下的一个远程数据同步工具。它可以通过 LAN/WAN 快速同步多台主机间的文件和目录&#xff0c;并适当利用 rsync 算法&#xff08;差分编码&#xff09;以减少数据的传输。 rsync 算法并不是每一次…

Explain详解与索引最佳实践

听课问题(听完课自己查资料) type中常用类型详细解释 null <- system <- const <- er_ref <- ref <- range <- index <- all Explain 各列解释 EXPLAIN SELECT* FROMactorLEFT JOIN film_actor ON actor_id actor.id; 1. id 代表执行的先后顺序 比如…

如何对制作好的查询进行编辑和导出?

发布者已经创建好了查询&#xff0c;如发现数据有误&#xff0c;想要进行修改&#xff0c;或者想要将收集好的表格进行导出&#xff0c;应该如何操作&#xff1f;本次就来介绍如何使用此功能。 &#x1f4d6;案例&#xff1a;教师荣誉核对系统 在开启可修改列功能的教师荣誉核对…

Laravel 使用rdkafka_laravel详细教程(实操避坑)

一、选择rdkafka 首先要看版本兼容问题&#xff0c;我的是Laravel5.6&#xff0c;PHP是7.3.13&#xff0c;所以需要下载兼容此的rdkafka&#xff0c;去 Packagist 搜索 kafka &#xff0c;我用的是 Packagist选择里面0.10.5版本&#xff0c; 二、安装rdkafka 在 Laravel 项目…

宋仕强论道之华强北精神和文化(二十一)

华强北的精神会内化再提炼和升华成为华强北文化&#xff0c;在外部会流传下去和传播开来。在事实上的行动层面&#xff0c;就是华强北人的思维方式和行为习惯&#xff0c;即见到机会就奋不顾身敢闯敢赌&#xff0c;在看似没有机会的时候拼出机会&#xff0c;和经济学家哈耶克企…

RT-DETR 更换主干网络之 ShuffleNetv2 | 《ShuffleNet v2:高效卷积神经网络架构设计的实用指南》

目前,神经网络架构设计多以计算复杂度的间接度量——FLOPs为指导。然而,直接的度量,如速度,也取决于其他因素,如内存访问成本和平台特性。因此,这项工作建议评估目标平台上的直接度量,而不仅仅是考虑失败。在一系列控制实验的基础上,本文得出了一些有效设计网络的实用指…

NPS配置https访问web管理页面

因为NPS默认也支持http的访问&#xff0c;所以在部署完后就一直没在意这个事情。 因为服务器是暴露在公网内的&#xff0c;所以还是要安全一点才行。不然一旦远控的机器被破解了就很危险了 一、使用nginx反向代理访问 1、首先在nps的配置文件里关闭使用https选项&#xff0c;…

时间服务器

NTP --- 网络时间协议&#xff0c;基于UDP的123端口 Chronyd --- 后台守护进程&#xff0c;用于同步时间 服务端&#xff1a; server&#xff1a;192.168.146.129 1、安装服务软件 2、运行软件程序 3、根据自定配置提供对应的服务 ---vim /etc/chrony.conf 对 4&#xff0c;29 …

HarmonyOS@Provide装饰器和@Consume装饰器:与后代组件双向同步

Provide装饰器和Consume装饰器&#xff1a;与后代组件双向同步 Provide和Consume&#xff0c;应用于与后代组件的双向数据同步&#xff0c;应用于状态数据在多个层级之间传递的场景。不同于上文提到的父子组件之间通过命名参数机制传递&#xff0c;Provide和Consume摆脱参数传…
最新文章