【详解】结构体的内存对齐(每步配图)

目录

引言:

为什么存在结构体内存对齐?

结构体内存对齐规则:

练习一:

测试代码:

结果如下:

第二个练习:结构体的嵌套问题

测试代码:

代码结果如下:

两个关于结构体的易错点:

第一个易错点:

第二个易错点:结构的⾃引⽤

解决方法:

结语:


引言:

今天我们就要来学习一下考试经常考察的结构体内存对齐问题,相信有很多同学都被这个问题恶心过🤢,不过没有关系今天我会给你们讲清楚的,请各位系好安全带,我们要开始出发啦😃

为什么存在结构体内存对齐?

大部分的参考资料都是这样说的:

1. 平台原因 (移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。 

介绍完原因后,接下来是结构体内存对齐的规则(重中之重,这里一定要弄懂啊!!!)

结构体内存对齐规则:

1.结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍(0,1,2...)的地址处。

对⻬数=编译器默认的⼀个对⻬数与该成员变量⼤⼩的较⼩值。

- VS 中默认的值为 8

- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。 

接下来为了帮助大家理解下面我给出几个实例大家可以自己手算

练习一:

因为c1是char类型1个字符,系统给的对齐数为8,和1相比取小的,c1的对齐数为min(1,8)所以在哪开始都可以,i是int类型4个字节要从它的整数倍开始,所以只能从min(4,8)开始,c2在哪都可以开始,最后不要忘了第三点结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。这里特别注意是总大小,不是最大下标,是最大下标加一。故最后下标到11位置,图解如下:

c1用蓝色表示,浪费的地址为白色,i为红色,c2为绿色

测试代码:

#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
struct S1
{
	char c1;
	int i;
	char c2;
};
int main()
{
	int t = sizeof(struct S1);
	printf("%d", t);
}

结果如下:

第二个练习:结构体的嵌套问题

解决这个问题后,大家结构体内存对齐问题就没有问题啦,大家快快算算看🙌

//练习2-结构体嵌套问题
struct S3
{
    double d;
    char c;
    int i;
};
struct S4
{
    char c1;
    struct S3 s3;
    double d;
};
printf("%d\n", sizeof(struct S4));

解释如下:c1跳过,既然要计算s3,那么我们就要返回S3中,先算s3的内存占多大,d为double类型8个字节min(8,8),0是8的整数倍,c随便,i对齐数为min(4,8),9不是4的倍数,故跳到12,最后算下来s3占的字节数为16图解如下。

计算完s3,我们终于可以计算s4了,s3的填入看看我们对齐规则的第四点:4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。在本题结构体成员的成员中最大对齐数为d的8,故s3的对齐数为8,d为min(8,8),最后别忘了,第三点:3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对齐数中最⼤的)的整数倍。

总图解如下:(c1蓝色,s3绿色,d红色,白色为浪费空间)

测试代码:

#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
//练习4-结构体嵌套问题
struct S3
{
	double d;
	char c;
	int i;
};
struct S4
{
	char c1;
	struct S3 s3;
	double d;
};
int main()
{
	printf("%d\n", sizeof(struct S4));
	return 0;
}

代码结果如下:

补充一个小知识:编译器的默认对齐数是可以自己修改的,c语言就是这么霸道

#pragma这个预处理指令,可以修改编译器的默认对齐数。用法如下:要加一个pack()

#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
	//输出的结果是什么?
	printf("%d\n", sizeof(struct S));
	return 0;
}

到这我就已经把结构体的对齐给你讲清楚了(大家一定要自己算算),考试遇到直接给它喵了!!!

两个关于结构体的易错点:

关于结构体为了防止大家出错,这里我给大家总结出来两个易错点供大家参考,大家看看自己有没有遇到这些情况,遇到了又该如何解决呢?下面我将带大家避免掉入这些坑。

第一个易错点:

大家先看看下面这个代码合不合法

struct
{
	int a;
	char b;
	float c;
}x;
struct
{
	int a;
	char b;
	float c;
}a[20], * p;
//下面这个合法吗
*p = x;

我们可以看到这是因为没有给结构体命名导致的争议,其实这是非法的,因为这两个结构体是不同的🙅‍,也就是说这两个结构体不是同一个类型的,所以匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。

第二个易错点:结构的⾃引⽤

下面这个代码合法吗?🐱‍🏍

如果正确的话那么sizeof(struct Node)的值是多少?

很明显这是非法的,因为这样sizeof(struct Node)的值是无穷的,就好像递归没有出口一样

正确引用如下:

我们可以看到这就是类似链表洛

struct Node
{
    int data;
    struct Node* next;
};

解决方法:

定义结构体不要使用匿名结构体了(好习惯要记住哟!!!)

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固自己的知识点,和一个学习的总结,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进,如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/316164.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第七讲 单片机驱动彩色液晶屏 控制RA8889软件:显示文字:Part3.自建字库

单片机驱动TFT彩色液晶屏系列讲座 目录 第一讲 单片机最小系统STM32F103C6T6通过RA8889驱动彩色液晶屏播放视频 第二讲 单片机最小系统STM32F103C6T6控制RA8889驱动彩色液晶屏硬件框架 第三讲 单片机驱动彩色液晶屏 控制RA8889软件:如何初始化 第四讲 单片机驱动彩色液晶屏 控…

【重明】机器视觉QT/C++实现工业相机二次开发框架

工业相机二次开发是机器视觉行业必不可少的技能之一。 而如何实现一个框架&#xff0c;能够兼容所有工业相机二次开发&#xff0c;从而支持多种类型的工业相机&#xff0c;就是机器视觉行业的进阶技能了。 重明工业相机二次开发项目就是在实现相机二开框架的基础上&#xff0c…

Java面试汇总——redis篇

1、什么是缓存穿透 ? 怎么解决 ? 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在&#xff0c;这样缓存就形同虚设&#xff08;只有数据库查到了&#xff0c;才会让redis缓存&#xff0c;但现在的问题是查不到&#xff09;&#xff0c;会频繁的去访问数据库。 解决…

6. 逻辑删除

逻辑删除对应的是物理删除&#xff0c;分别介绍一下这两个概念&#xff1a; 物理删除 &#xff1a;指的是真正的删除&#xff0c;即&#xff1a;当执行删除操作时&#xff0c;将数据表中的数据进行删除&#xff0c;之后将无法再查询到该数据逻辑删除 &#xff1a;并不是真正意…

whistle代理+mock轻松解决“页面端“测试接口没数据难题

0、whistle是什么&#xff1f;怎么用&#xff1f; 自行百度&#xff0c;此处不再赘述&#xff01; 1、示例演示&#xff08;交易订单测试&#xff09; 背景和痛点最近在测试一个小需求&#xff0c;需要涉及订单侧服务商品库侧服务库存侧服务财务侧线下交易服务。痛点主要在订…

淘宝商家实现批量上货API接口调用接入说明(淘宝开放平台免申请接入)

API接入详细步骤&#xff1a; 第一步&#xff1a;在淘宝开放平台中选择接口塡写应用申报递交给我司&#xff0c;确认接口是否都有。 第二步&#xff1a;确认接口都有&#xff0c;需交1000元进行测试&#xff0c;可以测试三天&#xff0c;测试数据符合淘宝开放平台接口参数说明&…

【python】09.面向对象进阶

面向对象进阶 在前面的章节我们已经了解了面向对象的入门知识&#xff0c;知道了如何定义类&#xff0c;如何创建对象以及如何给对象发消息。为了能够更好的使用面向对象编程思想进行程序开发&#xff0c;我们还需要对Python中的面向对象编程进行更为深入的了解。 property装…

轴组【CAN】

如果有126个轴&#xff0c;你程序里挨个添加轴很麻烦。 可以用轴组批量添加。【数组】 CAN驱动器 0x164 就是下个驱动器 p_CAN主站地址:ADR(IoConfig_Globals.CANopen_Manager_SoftMotion);p_CAN从站地址1:ADR(IoConfig_Globals.DMA882_CAN);p_CAN从站地址2:ADR(IoConfig_Gl…

超维空间M1无人机使用说明书——61、ROS无人机物体识别与精准投放

引言&#xff1a;基于空中物流的项目背景。我们提供了使用基于诗句的物体识别和精准投放、降落。实现原理如下&#xff1a; 1、在ROS下使用机载电脑实现物体识别 2、记载电脑根据反馈的位置发布运动控制指令 3、PX4解析机载电脑发布的命令&#xff0c;作出运动控制 4、设置…

PCL 使用克拉默法则进行四点定球(C++详细过程版)

目录 一、算法原理二、代码实现三、计算结果本文由CSDN点云侠原创,PCL 使用克拉默法则进行四点定球(C++详细过程版),爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。 一、算法原理 已知空间内不共面的四个点,设其坐标为 A (…

【Maven】003-基于 IDEA 创建 Maven 工程

【Maven】003-基于 IDEA 创建 Maven 工程 文章目录 【Maven】003-基于 IDEA 创建 Maven 工程一、关于 Maven 工程的 GAVP1、GAVP 简介2、GAV 坐标规范3、Packaging 定义规则 二、基于 IDEA 创建 Maven 工程1、创建 Maven 项目2、创建结果3、项目结构说明 一、关于 Maven 工程的…

特征工程-特征处理(一)

特征处理-&#xff08;离散型特征处理&#xff09; 完成特征理解和特征清洗之后&#xff0c;我们要进行特征工程中最为重要和复杂的一步了——特征处理 离散型特征处理 离散型特征通常为非连续值或以字符串形式存在的特征&#xff0c;离散型特征通常来讲是不能直接喂入模型中…

HandlerInterceptor拦截器 postHandle执行addHeader无效,postHandle执行setStatus无效的解决方案

问题描述 想在postHandle方法里执行addHeader方法来补充一些Header信息&#xff08;如分页信息&#xff09;&#xff0c;但是最后执行却未如期显示 拦截器源码 import com.zhangziwa.practisesvr.utils.response.ResponseContext; import jakarta.servlet.http.HttpServletR…

必看!2023年机器人领域十大事件!

原创 | 文 BFT机器人 2023年&#xff0c;机器人产业快速发展&#xff0c;成就了机器人领域的一个又一个里程碑。机器人行业涌现了许多令人瞩目的事件&#xff0c;实现了重大突破&#xff0c;展示了机器人技术在各个领域的广泛应用和革命性变革。 本文将对2023年机器人领域的十…

【MATLAB】REMD_LSTM神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 REMD-LSTM神经网络时序预测算法是一种结合了REMD&#xff08;Reservoir Enhanced Multi-scale Deep Learning&#xff09;算法和长短期记忆神经网络&#xff08;LSTM&#xff09;的时间序…

gem5学习(12):理解gem5 统计信息和输出——Understanding gem5 statistics and output

目录 一、config.ini 二、config.json 三、stats.txt 官方教程&#xff1a;gem5: Understanding gem5 statistics and output 在运行 gem5 之后&#xff0c;除了仿真脚本打印的仿真信息外&#xff0c;还会在根目录中名为 m5out 的目录中生成三个文件&#xff1a; config.i…

企业网络两层和三层架构部署有何差异

知识改变命运&#xff0c;技术就是要分享&#xff0c;有问题随时联系&#xff0c;免费答疑&#xff0c;欢迎联系&#xff01; 厦门微思网络​​​​​​ https://www.xmws.cn华为认证\华为HCIA-Datacom\华为HCIP-Datacom\华为HCIE-Datacom Linux\RHCE\RHCE 9.0\RHCA\ Oracle OC…

如何用mixlab-nodes实现LOGO生成的应用DEMO?#这就是生产力

ComfyUI的工作流&#xff0c;可以把一件需要重复的事情变成一个流水线&#xff0c;自动完成&#xff0c;再加上高度可自定义的节点生态&#xff0c;可以添加各种批量化的能力&#xff0c;这样就有了非常强大的内容生产力。 本期&#xff0c;主要介绍mixlab-nodes的3个生产力节…

《 乱弹篇(二)》

题记 昨&#xff08;2024年1月12日&#xff09;天&#xff0c;既然笔者因感到写时评文力不从心&#xff0c;新辟一专栏《乱弹篇》&#xff0c;开始了“ 东西南北&#xff0c;古今中外&#xff0c;谈而不乱&#xff0c;抒怀而已”的写作路径&#xff0c;就要走下去&#xff0c;…

搭建个人智能家居 2 -安装ESPHome

搭建个人智能家居 2 -安装ESPHome 前言ESPHome Linux平台windows平台总结 前言 上一篇文章我们演示了多个平台下面搭建HomeAssistant&#xff0c;可能有一些小伙伴在安装、运行HomeAssistant OS后&#xff0c;打开HomeAssistant的控制台时会出现下面图片显示的问题 这一般是本…