浅析 Jetty 中的线程优化思路

作者:vivo 互联网服务器团队- Wang Ke

本文介绍了 Jetty 中 ManagedSelector 和 ExecutionStrategy 的设计实现,通过与原生 select 调用的对比揭示了 Jetty 的线程优化思路。Jetty 设计了一个自适应的线程执行策略(EatWhatYouKill),在不出现线程饥饿的情况下尽量用同一个线程侦测 I/O 事件和处理 I/O 事件,充分利用了 CPU 缓存并减少了线程切换的开销。这种优化思路对于有大量 I/O 操作场景下的性能优化具有一定的借鉴意义。

一、什么是 Jetty

Jetty 跟 Tomcat 一样是一种 Web 容器,它的总体架构设计如下:

Jetty 总体上由一系列 Connector、一系列 Handler 和一个 ThreadPool组成。

Connector 也就是 Jetty 的连接器组件,相比较 Tomcat 的连接器,Jetty 的连接器在设计上有自己的特点。

Jetty 的 Connector 支持 NIO 通信模型,NIO 模型中的主角是 Selector,Jetty 在 Java 原生 Selector 的基础上封装了自己的 Selector:ManagedSelector。

二、Jetty 中的 Selector 交互

2.1 传统的 Selector 实现

常规的 NIO 编程思路是将 I/O 事件的侦测和请求的处理分别用不同的线程处理。

具体过程是:

  1. 启动一个线程;

  2. 在一个死循环里不断地调用 select 方法,检测 Channel 的 I/O 状态;

  3. 一旦 I/O 事件到达,就把该 I/O 事件以及一些数据包装成一个 Runnable;

  4. 将 Runnable 放到新线程中去处理。

这个过程有两个线程在干活:一个是 I/O 事件检测线程、一个是 I/O 事件处理线程。

这两个线程是"生产者"和"消费者"的关系。

这样设计的好处:

将两个工作用不同的线程处理,好处是它们互不干扰和阻塞对方。

这样设计的缺陷:

当 Selector 检测读就绪事件时,数据已经被拷贝到内核中的缓存了,同时 CPU 的缓存中也有这些数据了。

这时当应用程序去读这些数据时,如果用另一个线程去读,很有可能这个读线程使用另一个 CPU 核,而不是之前那个检测数据就绪的 CPU 核。

这样 CPU 缓存中的数据就用不上了,并且线程切换也需要开销。

2.2 Jetty 中的 ManagedSelector 实现

Jetty 的 Connector 将 I/O 事件的生产和消费放到同一个线程处理。

如果执行过程中线程不阻塞,操作系统会用同一个 CPU 核来执行这两个任务,这样既能充分利用 CPU 缓存,又可以减少线程上下文切换的开销。

ManagedSelector 本质上是一个 Selector,负责 I/O 事件的检测和分发。

为了方便使用,Jetty 在 Java 原生 Selector 的基础上做了一些扩展,它的成员变量如下:

public class ManagedSelector extends ContainerLifeCycle implements Dumpable
{
    // 原子变量,表明当前的ManagedSelector是否已经启动
    private final AtomicBoolean _started = new AtomicBoolean(false);
     
    // 表明是否阻塞在select调用上
    private boolean _selecting = false;
     
    // 管理器的引用,SelectorManager管理若干ManagedSelector的生命周期
    private final SelectorManager _selectorManager;
     
    // ManagedSelector的id
    private final int _id;
     
    // 关键的执行策略,生产者和消费者是否在同一个线程处理由它决定
    private final ExecutionStrategy _strategy;
     
    // Java原生的Selector
    private Selector _selector;
     
    // "Selector更新任务"队列
    private Deque<SelectorUpdate> _updates = new ArrayDeque<>();
    private Deque<SelectorUpdate> _updateable = new ArrayDeque<>();
     
    ...
}

2.2.1 SelectorUpdate 接口

为什么需要一个"Selector更新任务"队列呢?

对于 Selector 的用户来说,我们对 Selector 的操作无非是将 Channel 注册到 Selector 或者告诉 Selector 我对什么 I/O 事件感兴趣。

这些操作其实就是对 Selector 状态的更新,Jetty 把这些操作抽象成 SelectorUpdate 接口。

/**
 * A selector update to be done when the selector has been woken.
 */
public interface SelectorUpdate
{
    void update(Selector selector);
}

这意味着不能直接操作 ManagedSelector 中的 Selector,而是需要向 ManagedSelector 提交一个任务类。

这个类需要实现 SelectorUpdate 接口的 update 方法,在 update 方法中定义要对 ManagedSelector 做的操作。

比如 Connector 中的 Endpoint 组件对读就绪事件感兴趣。

它就向 ManagedSelector 提交了一个内部任务类 ManagedSelector.SelectorUpdate:

_selector.submit(_updateKeyAction);

这个 _updateKeyAction 就是一个 SelectorUpdate 实例,它的 update 方法实现如下:

private final ManagedSelector.SelectorUpdate _updateKeyAction = new ManagedSelector.SelectorUpdate()
{
    @Override
    public void update(Selector selector)
{
        // 这里的updateKey其实就是调用了SelectionKey.interestOps(OP_READ);
        updateKey();
    }
};

在 update 方法里,调用了 SelectionKey 类的 interestOps 方法,传入的参数是 OP_READ,意思是我对这个 Channel 上的读就绪事件感兴趣。

2.2.2 Selectable 接口

上面有了 update 方法,那谁来执行这些 update 呢,答案是 ManagedSelector 自己。

它在一个死循环里拉取这些 SelectorUpdate 任务逐个执行。

I/O 事件到达时,ManagedSelector 通过一个任务类接口(Selectable 接口)来确定由哪个函数处理这个事件。

public interface Selectable
{
    // 当某一个Channel的I/O事件就绪后,ManagedSelector会调用的回调函数
    Runnable onSelected();
 
    // 当所有事件处理完了之后ManagedSelector会调的回调函数
    void updateKey();
}

Selectable 接口的 onSelected() 方法返回一个 Runnable,这个 Runnable 就是 I/O 事件就绪时相应的处理逻辑。

ManagedSelector 在检测到某个 Channel 上的 I/O 事件就绪时,ManagedSelector 调用这个 Channel 所绑定的类的 onSelected 方法来拿到一个 Runnable。

然后把 Runnable 扔给线程池去执行。

三、Jetty 的线程优化思路

3.1 Jetty 中的 ExecutionStrategy 实现

前面介绍了 ManagedSelector 的使用交互:

  1. 如何注册 Channel 以及 I/O 事件

  2. 提供什么样的处理类来处理 I/O 事件

那么 ManagedSelector 如何统一管理和维护用户注册的 Channel 集合呢,答案是 ExecutionStrategy 接口。

这个接口将具体任务的生产委托给内部接口 Producer,而在自己的 produce 方法里实现具体执行逻辑。

这个 Runnable 的任务可以由当前线程执行,也可以放到新线程中执行。

public interface ExecutionStrategy
{
    // 只在HTTP2中用到的一个方法,暂时忽略
    public void dispatch();
 
    // 实现具体执行策略,任务生产出来后可能由当前线程执行,也可能由新线程来执行
    public void produce();
     
    // 任务的生产委托给Producer内部接口
    public interface Producer
    {
        // 生产一个Runnable(任务)
        Runnable produce();
    }
}

实现 Produce 接口生产任务,一旦任务生产出来,ExecutionStrategy 会负责执行这个任务。

private class SelectorProducer implements ExecutionStrategy.Producer
{
    private Set<SelectionKey> _keys = Collections.emptySet();
    private Iterator<SelectionKey> _cursor = Collections.emptyIterator();
 
    @Override
    public Runnable produce()
{
        while (true)
        {
            // 如果Channel集合中有I/O事件就绪,调用前面提到的Selectable接口获取Runnable,直接返回给ExecutionStrategy去处理
            Runnable task = processSelected();
            if (task != null)
                return task;
             
           // 如果没有I/O事件就绪,就干点杂活,看看有没有客户提交了更新Selector的任务,就是上面提到的SelectorUpdate任务类。
            processUpdates();
            updateKeys();
 
           // 继续执行select方法,侦测I/O就绪事件
            if (!select())
                return null;
        }
    }
 }

SelectorProducer 是 ManagedSelector 的内部类。

SelectorProducer 实现了 ExecutionStrategy 中的 Producer 接口中的 produce 方法,需要向 ExecutionStrategy 返回一个 Runnable。

在 produce 方法中 SelectorProducer 主要干了三件事:

  1. 如果 Channel 集合中有 I/O 事件就绪,调用前面提到的 Selectable 接口获取 Runnable,直接返回给 ExecutionStrategy 处理。

  2. 如果没有 I/O 事件就绪,就干点杂活,看看有没有客户提交了更新 Selector 上事件注册的任务,也就是上面提到的 SelectorUpdate 任务类。

  3. 干完杂活继续执行 select 方法,侦测 I/O 就绪事件。

3.2 Jetty 的线程执行策略

3.2.1 ProduceConsume(PC) 线程执行策略

任务生产者自己依次生产和执行任务,对应到 NIO 通信模型就是用一个线程来侦测和处理一个 ManagedSelector 上的所有的 I/O 事件。

后面的 I/O 事件要等待前面的 I/O 事件处理完,效率明显不高。

图中,绿色代表生产一个任务,蓝色代表执行这个任务,下同。

3.2.2 ProduceExecuteConsume(PEC) 线程执行策略

任务生产者开启新线程来执行任务,这是典型的 I/O 事件侦测和处理用不同的线程来处理。

缺点是不能利用 CPU 缓存,并且线程切换成本高。

图中,棕色代表线程切换,下同。

3.2.3 ExecuteProduceConsume(EPC) 线程执行策略

任务生产者自己运行任务,这种方式可能会新建一个新的线程来继续生产和执行任务。

它的优点是能利用 CPU 缓存,但是潜在的问题是如果处理 I/O 事件的业务代码执行时间过长,会导致线程大量阻塞和线程饥饿。

3.2.4 EatWhatYouKill(EWYK) 改良线程执行策略

这是 Jetty 对 ExecuteProduceConsume 策略的改良,在线程池线程充足的情况下等同于 ExecuteProduceConsume;

当系统比较忙线程不够时,切换成 ProduceExecuteConsume 策略。

这么做的原因是:

ExecuteProduceConsume 是在同一线程执行 I/O 事件的生产和消费,它使用的线程来自 Jetty 全局的线程池,这些线程有可能被业务代码阻塞,如果阻塞的多了,全局线程池中线程自然就不够用了,最坏的情况是连 I/O 事件的侦测都没有线程可用了,会导致 Connector 拒绝浏览器请求。

于是 Jetty 做了一个优化

在低线程情况下,就执行 ProduceExecuteConsume 策略,I/O 侦测用专门的线程处理, I/O 事件的处理扔给线程池处理,其实就是放到线程池的队列里慢慢处理。

四、总结

本文基于 Jetty-9 介绍了 ManagedSelector 和 ExecutionStrategy 的设计实现,介绍了 PC、PEC、EPC 三种线程执行策略的差异,从 Jetty 对线程执行策略的改良操作中可以看出,Jetty 的线程执行策略会优先使用 EPC 使得生产和消费任务能够在同一个线程上运行,这样做可以充分利用热缓存,避免调度延迟。

这给我们做性能优化也提供了一些思路:

  1. 在保证不发生线程饥饿的情况下,尽量使用同一个线程生产和消费可以充分利用 CPU 缓存,并减少线程切换的开销。

  2. 根据实际场景选择最适合的执行策略,通过组合多个子策略也可以扬长避短达到1+1>2的效果。

参考文档:

  1. Class EatWhatYouKill

  2. Eat What You Kill

  3. Thread Starvation with Eat What You Kill

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/31980.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为eNSP入门实验,Vlan配置,路由配置,用户模式,链路聚合

文章目录 一、同一交换机下的PC通信二、不交换机下的PC通信三、配置静态路由通信四、路由器rip协议配置五、路由器ospf协议配置六、单臂路由七、通过三层交换机使不同的Vlan能连通八、设备consolo密码模式九、设备consolo用户密码模式&#xff08;AAA模式&#xff09;十、Telne…

运算放大器(一):电压跟随器

一、电压跟随器 电压跟随器&#xff08;单位增益放大器、缓冲放大器或隔离放大器&#xff09;是一种电压放大倍数为 1 的运算放大器&#xff0c;能够将输入信号的电压放大到同样的幅度并输出&#xff0c;同时保持输入输出电阻不变&#xff08;电压跟随器的输入电阻很大&#x…

【后端】SSM框架下REST风格代码注释详解

前言 最近学习了一下SSM&#xff0c;不得不说&#xff0c;spring不用注解真的是天打雷劈&#xff0c;就那个bean真的就是折磨人。 下面是我总结的spring注解。 Value 此注解可以用来获取导入的jdbc.properties文件的值。 Value("${jdbc.driver}")private String…

(论文阅读)Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

论文地址 https://openreview.net/pdf?id_VjQlMeSB_J 摘要 我们探索如何生成一个思维链——一系列中间推理步骤——如何显著提高大型语言模型执行复杂推理的能力。 特别是&#xff0c;我们展示了这种推理能力如何通过一种称为思维链提示的简单方法自然地出现在足够大的语言模…

【Flutter】Flutter 如何使用 flutter_swiper

文章目录 一、前言二、flutter_swiper 的概念三、Flutter 中的 flutter_swiper1. 使用的库2. 方法介绍 四、代码示例1. 简单示例2. 完整示例 五、总结 一、前言 在移动应用开发中&#xff0c;轮播图是一种常见的 UI 元素&#xff0c;它可以用来展示一系列的图片或者内容。在 F…

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置多帧采集模式(C++)

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置多帧采集模式&#xff08;C&#xff09; Baumer工业相机Baumer工业相机BGAPISDK和多帧采集模式的技术背景Baumer工业相机通过BGAPISDK设置多帧采集模式功能1.引用合适的类文件2.通过BGAPISDK设置多帧采集模式功能 Baumer工业相机…

Servlet (上篇)

哥几个来学 Servlet 啦 ~~ 目录 &#x1f332;一、什么是 Servlet &#x1f333;二、第一个 Servlet 程序 &#x1f347;1. 创建项目 &#x1f348;2. 引入依赖 &#x1f349;3. 创建目录 &#x1f34a;4. 编写代码 &#x1f34b;5. 打包程序 &#x1f96d;6. 部署程序…

【力扣刷题 | 第十五天】

目录 前言&#xff1a; ​​​​​​​63. 不同路径 II - 力扣&#xff08;LeetCode&#xff09; 343. 整数拆分 - 力扣&#xff08;LeetCode&#xff09; 总结&#xff1a; 前言&#xff1a; 本篇我们主要刷动态规划的题&#xff0c;解题还是严格按照我们在【夜深人静写算法…

macOS Sonoma 14 beta 2 (23A5276g) Boot ISO 原版可引导镜像

macOS Sonoma 14 beta 2 (23A5276g) Boot ISO 原版可引导镜像 本站下载的 macOS 软件包&#xff0c;既可以拖拽到 Applications&#xff08;应用程序&#xff09;下直接安装&#xff0c;也可以制作启动 U 盘安装&#xff0c;或者在虚拟机中启动安装。另外也支持在 Windows 和 …

第4章 流程控制

第4章 流程控制 if else常规用法 单分支&#xff0c;双分支&#xff0c;多分支 带返回值 ​ scala实现java三元运算符 ​ for循环控制 基本语法 for ( 循环变量 <- 数据集 ) { 循环体} package chapter04import scala.language.postfixOpsobject Test02_ForLoop {def ma…

java的嵌套类(nested class)、内部类(inner class)的区别

嵌套类即nested class&#xff0c;内部类即Inner class。 概括来说&#xff0c;嵌套类的概念比内部类概念大。嵌套类包含内部类和非内部类。一个内部类一定是一个嵌套类&#xff0c;但一个嵌套类不一定是一个内部类。 在一个类内部或者接口内部声明的类是嵌套类。 下面这些类是…

php个人简历模板

php个人简历模板一 目前所在&#xff1a; 广州 年 龄&#xff1a; 31 户口所在&#xff1a; 汕头 国 籍&#xff1a; 中国 婚姻状况&#xff1a; 已婚 民 族&#xff1a; 汉族 身 高&#xff1a; 175 cm 体 重&#xff1a; 求职意向 人才类型&#xff1a; 普通求职 应聘职…

React封装axios请求

1、前言 因为最近在进行老系统用新框架改造&#xff0c;正好用到了react&#xff0c;就顺便整理了一下react中对axios进行封装的相关知识点和步骤。 2、如何封装 可以参考一下chat gpt给出的回答。 我大概总结一下&#xff0c;其实就是使用axios.create创建一个axios的实例&…

如何清除浏览器的 DNS 缓存 (Chrome, Firefox, Safari)

如何清除浏览器的 DNS 缓存 (Chrome, Firefox, Safari) Chrome Chromium Edge Firefox Safari clear DNS Cache, flush DNS cache 请访问原文链接&#xff1a;https://sysin.org/blog/clear-browser-dns-cache/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。…

设计模型学习-UML图

1&#xff0c;简介 UML图有很多种类型&#xff0c;但掌握其中的类图、用例图和时序图就可以完成大部分的工作。其中最重要的便是「类图」&#xff0c;它是面向对象建模中最常用和最重要的图&#xff0c;是定义其他图的基础。 类图主要是用来显示系统中的类、接口以及它们之间的…

Qt/C++编写手机版本视频播放器和Onvif工具(可云台和录像)

一、前言 用Qtffmpeg写播放器很多人有疑问&#xff0c;为何不用Qt自己的多媒体框架来写&#xff0c;最重要的原因是Qt自带的目前都依赖具体的本地解码器&#xff0c;如果解码器不支持&#xff0c;那就是歇菜的&#xff0c;最多支持个MP4格式&#xff0c;而且在手机上也都是支持…

音视频数据处理-H265/HEVC视频码流分析

一、H265概述 H265/HEVC&#xff08;Hight Efficiency Video Coding&#xff09;是由ITU-T和ISO/IEC两大组织在H264/AVC的基础之上推出的新一代高效视频编码标准&#xff0c;主要为应对高清和超高清视频在网络传输和数据存储方面带来的挑战。上一篇文章对H264/AVC视频码流进行…

python复习第一章

什么是 Python&#xff1f; Python 是一门流行的编程语言。它由 Guido van Rossum 创建&#xff0c;于 1991 年发布。 它用于&#xff1a; Web 开发&#xff08;服务器端&#xff09;软件开发数学系统脚本 Python 可以做什么&#xff1f; 可以在服务器上使用 Python 来创建…

【软件设计师暴击考点】下午题高频考点暴击系列

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;软件…

“前端已死”

一、一些迹象 逛社区&#xff0c;偶然看到了这张图片&#xff1a; 嗯……我眉头一皱&#xff0c;久久不语&#xff0c;心想&#xff0c;有这么夸张吗&#xff0c;假的吧&#xff1f; 突然想到&#xff0c;最近我在社区发了个前端招聘的信息&#xff0c;结果简历漫天纷飞&…