【C/C++】之内存管理(超详细练气篇)

个人主页:平行线也会相交💪
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创
收录于专栏【C++之路】💌
本专栏旨在记录C++的学习路线,望对大家有所帮助🙇‍
希望我们一起努力、成长,共同进步。🍓
在这里插入图片描述

目录

  • 一、C/C++内存分布
  • 二、C语言中动态内存管理方式
  • 三、 C++中动态内存管理
    • 3.1new/delete操作内置类型
    • 3.2new和delete操作自定义类型
  • 四、operator new与operator delete函数
    • 4.1 operator new与operator delete函数(重点)
  • 五、new和delete的实现原理
    • 5.1内置类型
    • 5.2自定义类型
  • 六、定位new表达式(placement-new)
  • 七、常见面试题
    • 7.1 malloc/free和new/delete的区别
    • 7.2 内存泄漏
    • 7.3内存泄漏分类
    • 7.4如何检测内存泄漏(了解)
    • 7.5如何避免内存泄漏

一、C/C++内存分布

程序中需要存储一些数据,那关于数据的分类主要有下面这几种:

1.局部数据(通常是函数里面定义的一些局部变量,本质上存在于函数开辟的栈帧里面)
2.静态数据和全局数据(整个程序运行期间都存在的)
3.常量数据(常量数据比如说常量字符串)
4.动态申请数据(比如一些数据结构的内容)

  1. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的,建立栈帧最本质的作用是存储局部数据(即用即销毁)。
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
    创建共享共享内存,做进程间通信。(Linux课程如果没学到这块,现在只需要了解一下)
  3. 用于程序运行时动态内存分配,堆是可以上增长的。
  4. 静态区/数据段–存储全局数据和静态数据。
  5. 常量区/代码段–可执行的代码/只读常量。
int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
 static int staticVar = 1;
 int localVar = 1;
 int num1[10] = { 1, 2, 3, 4 };
 char char2[] = "abcd";
 const char* pChar3 = "abcd";
 int* ptr1 = (int*)malloc(sizeof(int) * 4);
 int* ptr2 = (int*)calloc(4, sizeof(int));
 int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
 free(ptr1);
 free(ptr3);
}

C语言中动态内存管理方式:malloc/calloc/realloc/free
【面试题】
1. malloc/calloc/realloc的区别?
   sizeof(char2) = ____;      strlen(char2) = ____;
   sizeof(pChar3) = ____;     strlen(pChar3) = ____;
   sizeof(ptr1) = ____;
3. sizeof 和 strlen 区别?

在这里插入图片描述

在这里插入图片描述

二、C语言中动态内存管理方式

现在来看下面:
在这里插入图片描述

三、 C++中动态内存管理

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因
此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。
在这里插入图片描述

struct ListNode
{
	int _val;
	struct ListNode* _next;

	//开辟空间的同时也会调用构造函数进行初始化
	ListNode(int x)
		:_val(x)
		, _next(NULL)
	{}
};

struct ListNode* BuyListNode(int x)
{
	//只是单纯的开空间
	struct ListNode* newnode = (struct ListNode*)malloc(sizeof(struct ListNode));
	//检查/
	newnode->_next = NULL;
	newnode->_val = x;
	return newnode;
}
int main()
{
	struct ListNode* n1 = BuyListNode(1);
	struct ListNode* n2 = BuyListNode(2);
	struct ListNode* n3 = BuyListNode(3);

	//开空间+调用构造函数初始化
	ListNode* nn1 = new ListNode(1);
	ListNode* nn2 = new ListNode(2);
	ListNode* nn3 = new ListNode(3);
	return 0;
}

在这里插入图片描述

要注意:申请和释放单个元素的空间,使用new和delete,申请和释放连续的空间,使用new和delete[],要注意匹配起来使用。

3.1new/delete操作内置类型

void Test()
{
  // 动态申请一个int类型的空间
  int* ptr4 = new int;
  
  // 动态申请一个int类型的空间并初始化为10
  int* ptr5 = new int(10);
  
  // 动态申请10个int类型的空间
  int* ptr6 = new int[3];
  delete ptr4;
  delete ptr5;
  delete[] ptr6;
}

3.2new和delete操作自定义类型

new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间
还会调用构造函数和析构函数(即初始化)
,请看:
在这里插入图片描述
如果这里new了多个对象,就会调用多个构造函数,多个析构函数,请看:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
如果没有默认构造函数的话,我们还可以这样对对象进行初始化,请看:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

另外编译器还是挺智能的,对这里进行了优化:这里直接进行构造,而不是构造+拷贝构造,故编译器在这里进行了一些优化。

四、operator new与operator delete函数

4.1 operator new与operator delete函数(重点)

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是
系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过
operator delete全局函数来释放空间。

在这里插入图片描述
在这里插入图片描述

五、new和delete的实现原理

在这里插入图片描述
在这里插入图片描述

5.1内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申
请空间失败时会抛异常,malloc会返回NULL。

5.2自定义类型

  • new的原理
  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造
  • delete的原理
  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间
  • new T[N]的原理
  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
    象空间的申请
  2. 在申请的空间上执行N次构造函数
  • delete[]的原理
  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

六、定位new表达式(placement-new)

首先,我们要明确的是,自定义类型的对象才会自动的调用构造和析构函数,对于内置类型不会自定调用构造和析构函数。
定位new表达式(placement-new)已经不是单纯的new了,而是new的一些其他操作。
使用格式:

new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如
果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

作用就是:是在已分配的原始内存空间中调用构造函数初始化一个对象。
对于内置类型,构造函数是不可以自动调用的,但是如果想显式的对构造函数进行调用应该怎么办呢?
举个例子(显式调用构造函数),请看:

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};

int main()
{
	//构造函数不能显式调用,我们之前构造函数都是自动调用的,那如果想显式调用该怎么办呢?
	//定位new表达式(placement-new)可以显式调用构造函数

	A* p1 = (A*)malloc(sizeof(A));
	new(p1)A;//注意A类的构造函数有参数时,此处需要传参,这已经不是new的用法了,而是new关键字的其他用法,叫做定位new
	p1->~A();//这里就是显式调用析构函数
	free(p1);
	return 0;
}

运行结果如下,请看:
在这里插入图片描述
我们可以看到调试结果,可以看到我们通过显式调用对象的构造函数来对对象进行初始化;当然也可以显式调用析构函数,这里就不进行演示了。
总结一下定位new表达式(placement-new)的用法
malloc开好空间,要显式调用构造函数了(这里就是对已有的空间调用构造函数),如果想给参数的话可以这样,即new(p1)A(520);

七、常见面试题

7.1 malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地
方是:

  1. malloc和free是函数,new和delete是操作符
  2. malloc申请的空间不会初始化,new可以初始化
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,
    如果是多个对象,[]中指定对象个数即可
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需
    要捕获异常
  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new
    在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成
    空间中资源的清理

7.2 内存泄漏

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内
存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对
该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现
内存泄漏会导致响应越来越慢,最终卡死。

7.3内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

堆内存泄漏(Heap leak):
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一
块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分
内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

系统资源泄漏
指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放
掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

7.4如何检测内存泄漏(了解)

在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该
函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。

7.5如何避免内存泄漏

  1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:
    这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智
    能指针来管理才有保证。

  2. 采用RAII思想或者智能指针来管理资源。

  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。

  4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

在这里插入图片描述
在这里插入图片描述
上述代码并没有释放空间,程序结束后会自动对资源空间进行释放,所以我们平时在写程序时其实不用太过于担心内存的问泄露的题。因为程序运行结束后会释放资源空间,危害的话其实并没有太大。
内存泄露影响不大,进程正常结束后会释放资源,长期运行的程序内存泄露危害很大。

总结一下:
内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄
漏检测工具。

好了,C++内存管理的内容就到这里了,大家加油哦,再见啦各位友友!!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/32060.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基本 SQL 命令 、重要的 SQL命令、SQL 约束 及 SQL语句 的 执行顺序

学习目标&#xff1a; 学习目标如下&#xff1a; SQL语句执行顺序 学习内容&#xff1a; 基本 SQL 命令&#xff1a; FROMONJOINWHEREGROUP BYAGG_FUNCWITHHAVINGSELECT 从数据库中提取数据UNIONDISTINCTORDER BY 排序LIMIT 重要的sql命令&#xff1a; 1、SELECT - 从数据…

Finalshell安全吗?Xshell怎么样?

文章目录 一、我的常用ssh连接工具二、Xshell2.1 下载&#xff1a;认准官网2.2 Xshell 配置2.3 Xftp和WinSCP 一、我的常用ssh连接工具 之前讲过&#xff1a; 【服务器】远程连接选SSH&#xff08;PUTTY、Finalshell、WinSCP&#xff09; 还是 远程桌面&#xff08;RDP、VNC、…

解决 CentOS/Alma 安装 libpcap-devel 报错:No match for argument: libpcap-devel

环境&#xff1a;Alma 8.5、Centos 7.x 解决方案 Linux 安装软件的时候&#xff0c;需要 libpcap-devel 这个组件&#xff0c;执行命令&#xff1a;yum install libpcap-devel &#xff0c;然后报错如下&#xff1a; Last metadata expiration check: 0:05:24 ago on Mon 12…

【算法】数学相关知识总结

文章目录 gcd 和 lcm取模运算 %求一个点和一片矩形区域之间的最短距离 本文用于记录一些关于算法题中偶尔被使用到的数学相关知识。 gcd 和 lcm gcd 和 lcm 分别是 最大公约数&#xff08;Greatest common divisor&#xff09; 和 最小公因数&#xff08;Least Common Multip…

机器学习——决策树算法

一、实验目的 掌握如何实现决策树算法&#xff0c;用并决策树算法完成预测。 二、实验内容 本次实验任务我们使用贷款申请样本数据表&#xff0c;该数据表中每列数据分别代表ID、年龄、高薪、有房、信贷情况、类别&#xff0c;我们根据如下数据生成决策树&#xff0c;使用代…

二值化的mask生成yolov5-7.0的实例分割训练标签

背景&#xff1a;要用yolov5-7.0训练分割&#xff0c;这里使用自己的数据&#xff0c;mask是二值化的数据&#xff0c;要先转换成COCO格式&#xff0c;这里用imantics实现。 详见&#xff1a;https://zhuanlan.zhihu.com/p/427096258 截取部分代码如下图&#xff0c;读取image图…

ninja的简单使用

文章目录 Ninja安装windows环境Linux环境 入门使用与CMake一起使用 Ninja安装 windows环境 问题的解决通常有多种方法。按照结果的好坏程度&#xff0c;可以将解决方法简单的划分为&#xff0c;上中下三个层次&#xff0c;见:为什么谋士总喜欢提上中下三策&#xff1f; 在w…

C++静态和动态链接库导出和使用

1、简介 代码开发过程中会遇到很多已有的函数库&#xff0c;这些函数库是现有的&#xff0c;成熟的&#xff0c;可以复用的代码。现实中每个程序都要依赖很多基础的底层库&#xff0c;不可能每个人的代码都从零开始&#xff0c;因此库的存在意义非同寻常。 本质上来说库是一种…

在 K8S 中部署一个应用 上

本身在 K8S 中部署一个应用是需要写 yaml 文件的&#xff0c;我们这次简单部署&#xff0c;通过拉取网络上的镜像来部署应用&#xff0c;会用图解的方式来分享一下&#xff0c;过程中都发生了什么 简单部署一个程序 我们可以通过 kubectl run 的方式来简单部署一个应用&#…

测试技术体系

目录&#xff1a; 软件测试分类分层测试体系 1.软件测试分类 软件测试的分类_安全性测试属于功能测试吗_阿瞒有我良计15的博客-CSDN博客 1.单元测试&#xff08;Unit Testing&#xff09;&#xff1a;单元测试是指对软件的最小可测试单元进行测试&#xff0c;例如一个函数、一…

ES+Redis+MySQL,这个高可用架构设计

一、背景 会员系统是一种基础系统&#xff0c;跟公司所有业务线的下单主流程密切相关。如果会员系统出故障&#xff0c;会导致用户无法下单&#xff0c;影响范围是全公司所有业务线。所以&#xff0c;会员系统必须保证高性能、高可用&#xff0c;提供稳定、高效的基础服务。 …

macOS Ventura 13.4.1 (22F82) Boot ISO 原版可引导镜像下载

macOS Ventura 13.4.1 (22F82|22F2083) Boot ISO 原版可引导镜像下载 本站下载的 macOS 软件包&#xff0c;既可以拖拽到 Applications&#xff08;应用程序&#xff09;下直接安装&#xff0c;也可以制作启动 U 盘安装&#xff0c;或者在虚拟机中启动安装。另外也支持在 Wind…

TSception:从EEG中捕获时间动态和空间不对称性用于情绪识别

TSception&#xff1a;从EEG中捕获时间动态和空间不对称性用于情绪识别&#xff08;论文复现&#xff09; 摘要模型结构代码实现写在最后 **这是一篇代码复现&#xff0c;原文通过Pytorch实现&#xff0c;本文中使用Keras对该结构进行复现。**该论文发表在IEEE Transactions on…

Spark10-11

10. 广播变量 10.1 广播变量的使用场景 在很多计算场景&#xff0c;经常会遇到两个RDD进行JOIN&#xff0c;如果一个RDD对应的数据比较大&#xff0c;一个RDD对应的数据比较小&#xff0c;如果使用JOIN&#xff0c;那么会shuffle&#xff0c;导致效率变低。广播变量就是将相对…

Spring Boot 如何使用 @ExceptionHandler 注解处理异常消息

Spring Boot 如何使用 ExceptionHandler 注解处理异常消息 在 Spring Boot 应用程序中&#xff0c;异常处理是非常重要的一部分。当应用程序出现异常时&#xff0c;我们需要能够捕获和处理这些异常&#xff0c;并向用户提供有用的错误消息。在 Spring Boot 中&#xff0c;可以…

二叉平衡树之红黑树

目录 1.概念 2.性质 3.节点的定义 4.插入 1.按照二叉搜索树规则插入结点 2.调整颜色 1.uncle存在且为红色 2.uncle不存在或者为黑 cur为 3.根节点改为黑色 5.验证 6.比较 7.应用 1.概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存…

2023年5月青少年机器人技术等级考试理论综合试卷(五级)

青少年机器人技术等级考试理论综合试卷&#xff08;五级&#xff09; 分数&#xff1a; 100 题数&#xff1a; 30 一、 单选题(共 20 题&#xff0c; 每题 4 分&#xff0c; 共 80 分) 1.ESP32 for Arduino&#xff0c; 下列程序的运行结果是&#xff1f; &#xff08; &#x…

浅谈无线测温系统在高压开关柜中的应用

关注acrelzxz&#xff0c;了解更多详情 摘要&#xff1a;高压开关柜是配电系统中重要的组成部分&#xff0c;其主要作用是控制电荷、分配电能和开断电流等&#xff0c;对维持系统的稳定性有一定的保障作用。将无线测温技术应用于高压开关柜&#xff0c;可以实现对其进行实时的…

校园外卖行业内卷之下,高校外卖创业者如何成为卷王?

伴随着外卖行业的不断发展&#xff0c;校园市场前景广阔。校园外卖市场因各大平台的竞争而变得越来越复杂。各种技术支持和经验参考让大学生创业校园外卖越来越困难&#xff0c;市场竞争也越来越激烈。 校园外卖市场究竟有多内卷&#xff1f; 外卖龙头企业。 校园市场广阔的发…

【高危】crypto-js<3.2.1 存在不安全的随机性漏洞

漏洞描述 crypto-js 是一个 JavaScript 加密库&#xff0c;用于在浏览器和 Node.js 环境中执行加密和解密操作。 crypto-js 3.2.1 之前版本中的 secureRandom 函数通过将字符串 0. 和三位随机整数拼接的格式生成加密字符串&#xff0c;攻击者可通过爆破破解加密字符。 漏洞…
最新文章