【C++详解】——红黑树

目录

红黑树的概念 

红黑树的性质 

红黑树节点的定义 

红黑树的结构 

红黑树的插入操作 

情况一 

情况二 

情况三 

红黑树的验证 

 红黑树的查找 

红黑树与AVL树的比较 


红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。

通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。

 

红黑树的性质 

红黑树为了保证其最长路径中节点个数不会超过最短路径节点个数的两倍,具有以下性质:

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

根据红黑树的性质3可以得出,红黑树当中不会出现连续的红色结点,而根据性质4又可以得出,从某一结点到其后代叶子结点的所有路径上包含的黑色结点的数目是相同的。

我们假设在红黑树中,从根到叶子的所有路径上包含的黑色结点的个数都是N个,那么最短路径就是全部由黑色节点构成的路径,即长度为N。 

而最长可能路径就是由一黑一红结点构成的路径,该路径当中黑色结点与红色结点的数目相同,即长度为2N。 

 因此,红黑树从根到叶子的最长可能路径不会超过最短可能路径的两倍。

红黑树节点的定义 

template<class K, class V>
struct RBTreeNode
{
	//三叉链
    //方便旋转操作
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	//存储的键值对
	pair<K, V> _kv;

	//结点的颜色
	int _col; //红/黑

	//构造函数
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

对于节点的颜色,因为只有红和黑两种颜色,bool值表示比较简单,但这里我使用枚举定义颜色,可以增加代码的可读性和可维护性,并且便于后序的调试操作。

//枚举定义结点的颜色
enum Colour
{
	RED,
	BLACK
};

 【思考】在节点的定义中,为什么要将节点的默认颜色给成红色的?

当我们向红黑树插入结点时,若我们插入的是黑色结点,那么插入路径上黑色结点的数目就比其他路径上黑色结点的数目多了一个,即破坏了红黑树的性质4,此时我们就需要对红黑树进行调整。

若我们插入红黑树的结点是红色的,此时如果其父结点也是红色的,那么表明出现了连续的红色结点,即破坏了红黑树的性质3,此时我们需要对红黑树进行调整;但如果其父结点是黑色的,那我们就无需对红黑树进行调整,插入后仍满足红黑树的要求。 

插入黑色结点,一定破坏红黑树的性质4,必须对红黑树进行调整。插入红色结点,可能破坏红黑树的性质3,可能对红黑树进行调整。因此,我们在构造结点进行插入时,应该默认将结点的颜色设置为红色。

红黑树的结构 

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了
与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft
域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:


 

红黑树的插入操作 

红黑树的插入操作与二叉搜索树插入结点时的逻辑相同,可以分为三个步骤,红黑树的关键在于第三步对红黑树的调整。 

  1. 按二叉搜索树的插入方法,找到待插入位置。
  2. 将待插入结点插入到树中。
  3. 若插入结点的父结点是红色的,则需要对红黑树进行调整。

红黑树在插入结点后是如何调整的? 

 实际上,在插入结点后并不是一定会对红黑树进行调整,若插入结点的父结点是黑色的,那么我们就不用对红黑树进行调整,因为本次结点的插入并没有破坏红黑树的五点性质。(这也是为什么我们默认将待插入的节点设置为红色)

只有当插入结点的父结点是红色时才需要对红黑树进行调整,因为我们默认插入的结点就是红色的,如果插入结点的父结点也是红色的,那么此时就出现了连续的红色结点,因此需要对红黑树进行调整。 

因为插入结点的父结点是红色的,说明父结点不是根结点(根结点是黑色的),因此插入结点的祖父结点(父结点的父结点)就一定存在。

红黑树调整时具体应该如何调整,主要是看插入结点的叔叔(插入结点的父结点的兄弟结点),根据插入结点叔叔的不同,可将红黑树的调整分为三种情况。 

【约定】:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一 

cur为红,p为红,g为黑,u存在且为红

此时为了避免出现连续的红色结点,我们可以将父结点变黑,但为了保持每条路径黑色结点的数目不变,因此我们还需要将祖父结点变红,再将叔叔变黑。这样一来既保持了每条路径黑色结点的数目不变,也解决了连续红色结点的问题。

但调整还没有结束,因为此时祖父结点变成了红色,如果祖父结点是根结点,那我们直接再将祖父结点变成黑色即可,此时相当于每条路径黑色结点的数目都增加了一个。 

但如果祖父结点不是根结点的话,我们就需要将祖父结点当作新插入的结点,再判断其父结点是否为红色,若其父结点也是红色,那么又需要根据其叔叔的不同,进而进行不同的调整操作。

因此,情况一的抽象图表示如下: 

 

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。 

情况二 

cur为红,p为红,g为黑,u不存在/u存在且为黑

u存在且为黑的情况一定是在情况一继续往上调整的过程中出现的,即这种情况下的cur结点一定不是新插入的结点,而是上一次情况一调整过程中的祖父结点,如下图:

我们将路径中祖父结点之上黑色结点的数目设为X,将叔叔结点之下黑色结点的数目设为Y,则在插入结点前,图示两条路径黑色结点的数目分别为X+1和X+2+Y,很明显左右两条路径的黑色节点不同,因此在插入结点前就不满足红黑树的要求了,所以说叔叔结点存在且为黑这种情况,一定是由情况一往上调整过程中才会出现的一种情况。

出现叔叔存在且为黑时,单纯使用变色已经无法处理了,这时我们需要进行旋转处理。若祖孙三代的关系是直线(cur、parent、grandfather这三个结点为一条直线),则我们需要先进行单旋操作,再进行颜色调整,颜色调整后这棵被旋转子树的根结点是黑色的,因此无需继续往上进行处理。 

 【说明】u的情况有两种

  1. 如果u节点不存在,则cur一定是新插入的节点,因为如果cur不是新插入的节点,则cur和p一定有一个节点的颜色是黑色的,就不满足性质4。
  2. 如果u节点存在且是黑色的,那么cur节点原来的颜色一定是黑色的,现在看到是红色的原因正如上面所说,cur的子树在调整的过程中将cur的颜色由黑色变成红色了。

解决方式:

  • p为g的左孩子,cur为p的左孩子,则进行右单旋转
  • p为g的右孩子,cur为p的右孩子,则进行左单旋转
  • p、g变色--p变黑,g变红

情况三 

cur为红,p为红,g为黑,u不存在/u存在且为黑

情况三与情况二类似,只不过情况三是双旋,情况二是单旋

解决方式:

  • p为g的左孩子,cur为p的右孩子,则针对p做左单旋转
  • p为g的右孩子,cur为p的左孩子,则针对p做右单旋转

然后即可按照情况二处理

红黑树的验证 

红黑树也是一种特殊的二叉搜索树,因此我们可以先获取二叉树的中序遍历序列,来判断该二叉树是否满足二叉搜索树的性质。 

//中序遍历
void Inorder()
{
	_Inorder(_root);
}
//中序遍历子函数
void _Inorder(Node* root)
{
	if (root == nullptr)
		return;
	_Inorder(root->_left);
	cout << root->_kv.first << " ";
	_Inorder(root->_right);
}

 但中序有序只能证明是二叉搜索树,要证明二叉树是红黑树还需验证该二叉树是否满足红黑树的性质。

//判断是否为红黑树
bool IsBalance()
{
	if (_root && _root->_col == RED)
	{
		cout << "根节点颜色是红色" << endl;
		return false;
	}

	int benchmark = 0;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_col == BLACK)
			++benchmark;
		cur = cur->_left;
	}
	// 连续红色节点
	return _Check(_root, 0, benchmark);
}

bool _Check(Node* root, int blackNum, int benchmark)
{
	if (root == nullptr)
	{
		if (benchmark != blackNum)
		{
			cout << "某条路径黑色节点的数量不相等" << endl;
			return false;
		}
		return true;
	}
	if (root->_col == BLACK)
	{
		++blackNum;
	}
	if (root->_col == RED 
		&& root->_parent 
		&& root->_parent->_col == RED)
	{
		cout << "存在连续的红色节点" << endl;
		return false;
	}
	return _Check(root->_left, blackNum, benchmark)
		&& _Check(root->_right, blackNum, benchmark);
}

 红黑树的查找 

 红黑树的查找函数与二叉搜索树的查找方式一模一样,逻辑如下:

  1. 若树为空树,则查找失败,返回nullptr。
  2. 若key值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  3. 若key值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  4. 若key值等于当前结点的值,则查找成功,返回对应结点。

代码如下: 

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			cur = cur->_right;
		}
		else if (cur->_kv.first > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}
	return nullptr;
}

红黑树与AVL树的比较 

红黑树和AVL树都是高效的平衡二叉树,增删查改的时间复杂度都是O(logN),但是红黑树和AVL树控制二叉树平衡的方式不同:

  • AVL树是通过控制左右高度差不超过1来实现二叉树平衡的,实现的是二叉树的严格平衡。
  • 红黑树是通过控制结点的颜色,从而使得红黑树当中最长可能路径不超过最短可能路径的2倍,实现的是近似平衡。

红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/32117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

校园网WiFi IPv6免流上网

ipv6的介绍 IPv6是国际协议的最新版本&#xff0c;用它来取代IPv4主要是为了解决IPv4网络地址枯竭的问题&#xff0c;也在其他很多方面对IPv4有所改进&#xff0c;比如网络的速度和安全性。 IPv4是一个32位的地址&#xff0c;随着用户的增加在2011年国家报道说IPv4的网络地址即…

SpringBoot整合模板引擎Thymeleaf(2)

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 概述 Thymeleaf十分类似于JSP中使用的EL表达式。整体而言&#xff0c;Thymeleaf简洁、优雅、高效&#xff1b;非常适合小型项目的快速开发。 Thymeleaf常用标签简述 在此…

Socket安全(一)

文章目录 1. 安全Socket2. 保护通信3. 创建安全客户端Socket4. 选择密码组5. 事件处理器6. 会话管理 1. 安全Socket 前面介绍了Socket的基本使用&#xff0c;这里开始介绍Socket的安全问题&#xff0c;作为一个Internet用户&#xff0c;你确实有一些保护手段可以保护自己的隐私…

【MongoDB】四、MongoDB副本集的部署

【MongoDB】四、MongoDB副本集的部署 实验目的实验内容实验步骤实验小结 实验目的 能够通过部署副本集理解副本集机制&#xff0c;从而解决大数据项目中数据丢失的问题 实验内容 环境准备&#xff1a;根据表中的信息完成3台MongoDB服务器的部署&#xff08;XXX是姓名拼音首字母…

Linux下使用Samba做域控

AI画妹子的工作先暂告一段落。毕竟戗行也是要有门槛的。 企业中使用Windows Server使用活动目录集中管理PC、服务器是很成熟的方案。突然想到&#xff0c;如果有一天出于某种原因不再使用微软方案了&#xff0c;AD该如何替代&#xff1f;问了一下chatGPT&#xff0c;它说&…

简易MFC的成绩管理系统

意义 掌握MFC控件的基本使用&#xff0c;结合了面向对象和Window消息机制的知识。 选择做简单的成绩管理系统&#xff0c;该项目切合大学生实际情况。易于更好理解。 项目实现了成绩的增加、修改、删除、存储&#xff08;文件读写操作&#xff09;的功能。 创建项目 打开软件…

浅谈企业能源监测管理系统的设计与应用

安科瑞 华楠 摘要: 针对企业目前能源监测现状, 结合企业信息化建设情况和发展需要, 介绍了能源监测管理信息系统, 提出了企业能源监测管理系统建设建议。 关键词:管理系统; 能源监测; 企业信息化 0 引言 节能降耗是缓解中国资源约束的根本出路, 也是提高企业自主创新能力的…

Vault从入门到精通系列之二:启动Vault服务器

Vault从入门到精通系列之二&#xff1a;启动Vault服务器 一、启动开发服务器二、设置环境变量三、验证服务器正在运行四、vault命令汇总 Vault 作为客户端-服务器应用程序运行。Vault 服务器是唯一与数据存储和后端交互的 Vault 架构。通过 Vault CLI 完成的所有操作都通过 TLS…

【并发知识点】CAS的实现原理及应用

系列文章目录 AQS的实现原理及应用 CAS的实现原理及应用 文章目录 系列文章目录前言1、CAS的概念2、CAS的实现原理3、单JVM内锁CAS实现3.1、效果 4、模拟赛龙舟比赛 前言 本章节介绍CAS概念、实现原理&#xff0c;并通过java代码应用&#xff0c;最终模拟赛龙舟比赛。 1、CA…

【spring cloud学习】2、Eureka服务注册与发现

前言 一套微服务架构的系统由很多单一职责的服务单元组成&#xff0c;而每个服务单元又有众多运行实例。由于各服务单元颗粒度较小、数量众多&#xff0c;相互之间呈现网状依赖关系&#xff0c;因此需要服务注册中心来统一管理微服务实例&#xff0c;维护各服务实例的健康状态…

【HTML】常用标签

文章目录 1.标题字标签h1-h62.段落标签p3.换行标签br4.格式化标签5.图片标签6.超链接标签a7.表格标签单元格合并行合并列合并 8.无序列表9.有序列表10.自定义列表11.表单标签11.1 form标签11.2 表单控件11.2.1 input标签11.2.2 label标签11.2.3 select标签11.2.4 textarea标签 …

外网SSH远程连接linux服务器「cpolar内网穿透」

文章目录 视频教程1. Linux CentOS安装cpolar2. 创建TCP隧道3. 随机地址公网远程连接4. 固定TCP地址5. 使用固定公网TCP地址SSH远程 转载自内网穿透工具的文章&#xff1a;无公网IP&#xff0c;SSH远程连接Linux CentOS服务器【内网穿透】 本次教程我们来实现如何在外公网环境下…

两阶段目标检测指南:R-CNN、FPN、Mask R-CNN

动动发财的小手&#xff0c;点个赞吧&#xff01; Source[1] 多阶段&#xff08;Two-stage&#xff09;物体检测 计算机视觉中最基本和最广泛研究的挑战之一是目标检测。该任务旨在在给定图像中绘制多个对象边界框&#xff0c;这在包括自动驾驶在内的许多领域非常重要。通常&am…

2022年长三角高校数学建模竞赛B题齿轮箱故障诊断解题全过程文档及程序

2022年长三角高校数学建模竞赛 B题 齿轮箱故障诊断 原题再现&#xff1a; 齿轮箱是用于增加输出扭矩或改变电机速度的机械装置&#xff0c;被广泛应用于如汽车、输送机、风机等机械设备中。它由两个或多个齿轮组成&#xff0c;其中一个齿轮由电机驱动。电机的轴连接到齿轮箱的…

SpringMvc入门

SpringMvc用来代替展示层Servlet&#xff0c;均属于Web层开发技术 Servlet是如何工作的 1、导入Servlet依赖坐标 2、创建一个Servlet接口实现类&#xff0c;重写其中的所有方法 3、在Servlet实现类上加上WebServlet注解&#xff0c;用来配置Servlet访问路径 4、启动Tomca…

总结906

学习目标&#xff1a; 月目标&#xff1a;6月&#xff08;线性代数强化9讲&#xff0c;背诵15篇短文&#xff0c;考研核心词过三遍&#xff09; 周目标&#xff1a;线性代数强化3讲&#xff0c;英语背3篇文章并回诵&#xff0c;检测 每日规划 今日已做&#xff1a; 1.回环背诵…

详解Hystrix

目录 1.微服务中的容错 1.1.服务雪崩 1.2.解决办法 2.hystrix 2.1.概述 2.2.项目结构及依赖 2.3.代码示例 2.3.1.注册中心 2.3.2.服务调用者 2.3.3.服务提供者 2.4.服务降级 2.4.1.单点响应 2.4.2.默认响应 2.4.3.前置响应 2.5.服务熔断 2.5.1.概述 2.5.2.使用…

centos 安装 nginx

1.下载nginx安装包 wget -c https://nginx.org/download/nginx-1.24.0.tar.gz 下载到了当前目录下 2.解压安装包 解压后的结果 3.安装依赖 yum -y install gcc gcc-c make libtool zlib zlib-devel openssl openssl-devel pcre pcre-devel 4. ./configure --prefix/usr/lo…

【Linux】深入理解文件系统

系列文章 收录于【Linux】文件系统 专栏 关于文件描述符与文件重定向的相关内容可以移步 文件描述符与重定向操作。 可以到 浅谈文件原理与操作 了解文件操作的系统接口。 想深入理解文件缓冲区还可以看看文件缓冲区。 目录 系列文章 磁盘 结构介绍 定位数据 抽象管理…

高速电路设计系列分享-电源噪声分析

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示&#xff1a;这里可以添加技术概要 例如&#xff1a; 当今许多应用都要求高速采样模数转换器&#xff08;ADC)具有12位或以上的分辨率&#xff0c;以便用户能够进行更精确的系统测量。然而&#xff0c;更高分辨率…
最新文章