使用 Elasticsearch 和 LlamaIndex 进行高级文本检索:句子窗口检索

2023 年是检索增强生成 (RAG) 的一年,人们探索了许多用例,并使用该技术开发了数百种产品。 从 Q/A 聊天机器人到基于上下文的代理,RAG 的使用一直是 LLM 申请快速增长的主要因素。 支持不断发展的社区以及 Langchain 和 LlamaIndex 等强大框架的可用性,使开发人员可以更轻松地构建复杂的应用程序。

在本文中,我想讨论一种先进的 RAG 技术,它有助于向客户提供了一些高质量的输出,并被证明是一种高效且有效的文本检索方法,即句子窗口检索 (sentence window retrieval - SWR)。

什么事 LIama-index

LlamaIndex 是一个数据框架,供 LLM 应用程序摄取、构建和访问私有或特定领域的数据。

LlamaIndex 是开源的,可用于构建各种应用程序。 在 GitHub 上查看该项目。

什么是句子窗口检索 ?

句子窗口检索背后的核心思想是根据查询有选择地从自定义知识库中获取上下文,然后利用该上下文的更广泛版本来生成更强大的文本。 此过程涉及嵌入一组有限的句子以供检索,这些句子周围的附加上下文(称为 “窗口上下文 - window context”)单独存储并链接到它们。 一旦识别出最相似的句子,就会在将这些句子发送到大型语言模型 (LLM) 进行生成之前重新整合上下文,从而丰富整体上下文理解。 通过将焦点缩小到特定的句子窗口,SWR 旨在提高信息提取的准确性和相关性,从而促进文本的全面合成。

这种方法的一个重要考虑因素是上下文窗口的大小,决定嵌入句子之前和之后有多少句子被合并到 LLM 中进行生成。 该方法相对于传统的检索增强生成(RAG)带来了一些改进:

  • 提高精度:通过将搜索范围缩小到特定句子,可以提高信息检索的精度,过滤掉可能削弱结果相关性的不必要信息。
  • 效率:SWR 通过最大限度地减少信息检索过程中处理的文本量、避免筛选冗长的文档并提高整体效率来加速流程。
  • 灵活性:研究人员受益于该技术的灵活性,使他们能够调整关键字周围文本窗口的大小,从而完善他们的搜索策略。

虽然 SWR 通过关注特定句子来减少标记的使用,但需要权衡,因为关键的文本块可能会被遗漏并最终出现在周围的上下文中。 选择适当的上下文窗口超参数对于解决此问题至关重要。

让我们使用 Elasticsearch 和 LlamaIndex 设置我们自己的基于 SWR 的 RAG 管道。 我们将一步一步地实现每个组件并提供详细的解释。

向量数据库设置

在本文中,我选择 Elasticsearch 作为我们的 Vector 数据库,其背后的原因是:

  • 开放几免费:那些计划构建包含向量搜索的可扩展人工智能应用程序的人可以考虑在其专用服务器上建立向量数据库 
  • 不仅仅是向量数据库:Elasticsearch 是一个构建在 Apache Lucene 之上的开源搜索和分析引擎。 它旨在处理大量数据并提供近乎实时的搜索功能。

在 Docker 上设置 Elasticsearch

使用以下 docker 命令启动单节点 Elasticsearch 实例。我们可以参考之前的文章 “Elasticsearch:如何在 Docker 上运行 Elasticsearch 8.x 进行本地开发”。我选择不使用安全配置。直接使用 docker compose 来启动 Elasticsearch 及 Kibana:

.env

$ pwd
/Users/liuxg/data/docker8
$ ls -al
total 16
drwxr-xr-x    4 liuxg  staff   128 Jan 16 13:00 .
drwxr-xr-x  193 liuxg  staff  6176 Jan 12 08:31 ..
-rw-r--r--    1 liuxg  staff    21 Jan 16 13:00 .env
-rw-r--r--    1 liuxg  staff   733 Mar 14  2023 docker-compose.yml
$ cat .env
STACK_VERSION=8.11.3

docker-compose.yml

version: "3.9"
services:
  elasticsearch:
    image: elasticsearch:${STACK_VERSION}
    container_name: elasticsearch
    environment:
      - discovery.type=single-node
      - ES_JAVA_OPTS=-Xms1g -Xmx1g
      - xpack.security.enabled=false
    volumes:
      - type: volume
        source: es_data
        target: /usr/share/elasticsearch/data
    ports:
      - target: 9200
        published: 9200
    networks:
      - elastic

  kibana:
    image: kibana:${STACK_VERSION}
    container_name: kibana
    ports:
      - target: 5601
        published: 5601
    depends_on:
      - elasticsearch
    networks:
      - elastic      

volumes:
  es_data:
    driver: local

networks:
  elastic:
    name: elastic
    driver: bridge

我们使用如下的命令来启动:

docker-compose up

这样我们就完成了 Elasticsearch 及 Kibana 的安装了。我们的 Elasticsearch 及 Kibana 都没有安全的设置。这个在生产环境中不被推荐使用。

应用设计 -  组装管道

我们将使用 Jupyter notebook 来进行设计。我们在命令行中打入:

jupyter notebook

安装依赖

我们使用如下的命令来安装 Python 的依赖包:

pip3 install llama-index openai elasticsearch transformers load_dotenv pypdf

我们接下来在当前的工作目录中创建一个叫做 .env 的文件:

.env

OPENAI_API_KEY="YourOpenAIKey"

请在 .env 中创建如上所示的变量。你需要把自己的 openai key 写入到上面的文件里。

初始化 LLM

import openai,os
from dotenv import load_dotenv
from llama_index.llms import OpenAI

load_dotenv()

openai_api_key=os.getenv('OPENAI_API_KEY')

openai.api_key = openai_api_key
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)

在本示例中,我们将使用在 pdf_files 目录下的 sample2.pdf 文件做为示例来进行展示。我们的文档共有 5 页。我们将使用 LlamaIndex 加载、分块和摄取我们的文件。你也可以使用自己的文件来进行练习。

加载数据中

我们使用 Llamaindex 的 SimpleDirectoryReader 来加载我们的 pdf 文件。 你可以使用此阅读器加载目录中的所有内容,但我们指定文件名更精确。

from llama_index import VectorStoreIndex, SimpleDirectoryReader, Document

reader = SimpleDirectoryReader(input_files=['./pdf_files/sample2.pdf'])
docs = reader.load_data()

document = Document(text="\n\n".join([doc.text for doc in docs]))

reader 将 pdf 中的所有页面加载到单独的文档中,并将它们添加到一个数组中,然后我们迭代所有文档并将它们连接到一个文档中。

将 Elasticsearch 初始化为向量存储

from llama_index.vector_stores import ElasticsearchStore

vector_store = ElasticsearchStore(
    es_url="http://localhost:9200",
    index_name="books"  # If this index doesn't exist, a new one is created
)

现在我们已经有了数据和向量存储,让我们开始构建实际的句子窗口检索框架。我们将首先构建一个句子窗口索引,并使用它来创建一个句子窗口查询引擎。

以下是构建句子窗口索引所需的函数:

from llama_index import ServiceContext, VectorStoreIndex, StorageContext
from llama_index.node_parser import SentenceWindowNodeParser
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.indices.postprocessor import SentenceTransformerRerank


def build_sentence_window_index(
    document, llm, vector_store, embed_model="local:BAAI/bge-small-en-v1.5"
):
    node_parser = SentenceWindowNodeParser.from_defaults(
        window_size=3,
        window_metadata_key="window",
        original_text_metadata_key="original_text",
    )
    sentence_context = ServiceContext.from_defaults(
        llm=llm,
        embed_model=embed_model,
        node_parser=node_parser
    )
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    sentence_index = VectorStoreIndex.from_documents(
        [document], service_context=sentence_context, storage_context=storage_context
    )

    return sentence_index

def get_sentence_window_query_engine(
    sentence_index,
    similarity_top_k=6,
    rerank_top_n=2,
):
    postproc = MetadataReplacementPostProcessor(target_metadata_key="window")
    rerank = SentenceTransformerRerank(
        top_n=rerank_top_n, model="BAAI/bge-reranker-base"
    )

    sentence_window_engine = sentence_index.as_query_engine(
        similarity_top_k=similarity_top_k, node_postprocessors=[postproc, rerank]
    )
    return sentence_window_engine

让我们分解这些功能并看看每个组件的作用:

Sentence Window Index

def build_sentence_window_index(
    document, llm, vector_store, embed_model="local:BAAI/bge-small-en-v1.5"
):
    # create the sentence window node parser w/ default settings
    node_parser = SentenceWindowNodeParser.from_defaults(
        window_size=3,
        window_metadata_key="window",
        original_text_metadata_key="original_text",
    )
    sentence_context = ServiceContext.from_defaults(
        llm=llm,
        embed_model=embed_model,
        node_parser=node_parser
    )
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    sentence_index = VectorStoreIndex.from_documents(
        [document], service_context=sentence_context, storage_context=storage_context
    )

    return sentence_index

build_sentence_window_index 函数用于从给定文档构建句子窗口的索引。 下面是它的作用的详细说明:

参数:该函数有四个参数:

  • document:构建索引的文档。
  • llm:要使用的语言模型。
  • vector_store:要使用的向量存储。 在本例中,它是 ElasticsearchStore 的一个实例,它使用 Elasticsearch 作为存储后端。
  • embed_model:要使用的嵌入模型。 默认值为 “local:BAAI/bge-small-en-v1.5”。

Node Parser:它使用默认设置创建一个 SentenceWindowNodeParser 对象。 该对象用于将文档解析为句子窗口,即句子序列。

Service Context:它使用提供的语言模型、嵌入模型和节点解析器创建 ServiceContext 对象。 该对象用于管理构建索引所需的服务。

Storage Context:它使用提供的向量存储创建一个 StorageContext 对象。 该对象用于管理索引的存储。

Index Creation:它使用服务上下文和存储上下文从文档创建 VectorStoreIndex。

Return Value: 返回创建的 VectorStoreIndex。

Query Engine

def get_sentence_window_query_engine(
    sentence_index,
    similarity_top_k=6,
    rerank_top_n=2,
):
    # define postprocessors
    postproc = MetadataReplacementPostProcessor(target_metadata_key="window")
    rerank = SentenceTransformerRerank(
        top_n=rerank_top_n, model="BAAI/bge-reranker-base"
    )

    sentence_window_engine = sentence_index.as_query_engine(
        similarity_top_k=similarity_top_k, node_postprocessors=[postproc, rerank]
    )
    return sentence_window_engine

get_sentence_window_query_engine 函数用于根据给定的句子窗口索引创建查询引擎。 下面是它的作用的详细说明:

参数:该函数采用三个参数:

  • Sentence_index:用于创建查询引擎的句子窗口索引。
  • similarity_top_k:要返回的最相似结果的数量。 默认值为 6。
  • rerank_top_n:要重新排名的顶部结果的数量。 默认值为 2。

Postprocessors:它定义了两个后处理器:

  • MetadataReplacementPostProcessor:此后处理器将每个节点的文本替换为 “window” 元数据键的值。
  • SentenceTransformerRerank:此后处理器使用句子转换器模型对顶部 rerank_top_n 结果进行重新排名。

查询引擎创建:它使用指定数量的要返回的最相似结果和定义的后处理器从句子窗口索引创建查询引擎。

返回值:返回创建的查询引擎。

重新排名是一个用于细化初始搜索结果的过程。

该函数使用 SentenceTransformerRerank 后处理器进行重新排名。 该后处理器使用句子转换器模型对顶部 rerank_top_n 结果进行重新排名。 rerank_top_n 参数指定应重新排名的顶部结果的数量。

重新排名过程涉及使用句子转换器模型来计算排名靠前的 rerank_top_n 结果的新相似度分数,然后根据新分数对这些结果进行排序。 这可以通过考虑初始排名可能无法捕获的更复杂的语义相似性来帮助提高结果的相关性。

把它放在一起

sentence_index = build_sentence_window_index(
    document,
    llm,
    embed_model="local:BAAI/bge-small-en-v1.5",
    vector_store=vector_store
)

query_engine = get_sentence_window_query_engine(sentence_index=sentence_index)

我们可以到 Kibana 里进行查看:

上面的向量的维度是384。我们可以在地址已进行查看。

我们已经有了引擎,让我们尝试从知识库中向它询问一个非常具体的问题:

resp = query_engine.query(
    "what is the article about"
)
print(resp)

说的很详细了!

我鼓励您利用你的知识库进行尝试,并将性能与现有的 RAG 实施进行比较。你可以在地址 https://github.com/liu-xiao-guo/semantic_search_es 下载源码。相关文件:

  • https://github.com/liu-xiao-guo/semantic_search_es/tree/main/pdf_files
  • https://github.com/liu-xiao-guo/semantic_search_es/blob/main/Elasticsearch%20and%20LlamaIndex%20-%20Sentence%20Window%20Retrieval.ipynb

更多阅读:https://docs.llamaindex.ai/en/stable/examples/vector_stores/Elasticsearch_demo.html#basic-example

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/328751.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Controller层自定义注解拦截request请求校验

一、背景 笔者工作中遇到一个需求,需要开发一个注解,放在controller层的类或者方法上,用以校验请求参数中(不管是url还是body体内,都要检查,有token参数,且符合校验规则就放行)是否传了一个token的参数&am…

Java工具类汇总

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! ExcelUtils public class ExcelUtils {/*** 注入的具有排序功能的handle*/private static final SortRowWriteHandler SORT_ROW_WRITE_HANDLER new SortRowWriteHan…

linux 网络文件共享服务

存储类型 DAS 直连式存储 SAN 存储区域网络 NAS 网络附近存储 FTP文件传输协议 文件传输协议 FTP 早期的三个应用级协议之一,基于c/s架构 数据传输格式:二进制(默认)和文本 tcp 21端口(权限,…

centos7配置时间同步网络时间

centos7配置时间同步网络时间 1、安装 NTP 工具。 sudo yum install -y ntp2启动 NTP 服务。 sudo systemctl start ntpd3、将 NTP 服务设置为开机自启动。 sudo systemctl enable ntpd4、验证 date

超5000亿元,2024年国家电网预计电网建设投资总规模

近日,国家电网公司对外透露,2024年将继续加大数智化坚强电网的建设,促进能源绿色低碳转型,推动阿坝至成都东等特高压工程开工建设。围绕数字化配电网、新型储能调节控制、车网互动等应用场景,打造一批数智化坚强电网示…

WEB服务器-Tomcat

3. WEB服务器-Tomcat 3.1 简介 3.1.1 服务器概述 服务器硬件 指的也是计算机,只不过服务器要比我们日常使用的计算机大很多。 服务器,也称伺服器。是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说…

Relation-Aware Graph Transformer for SQL-to-Text Generation

Relation-Aware Graph Transformer for SQL-to-Text Generation Abstract SQL2Text 是一项将 SQL 查询映射到相应的自然语言问题的任务。之前的工作将 SQL 表示为稀疏图,并利用 graph-to-sequence 模型来生成问题,其中每个节点只能与 k 跳节点通信。由…

shell简单截取curl GET返回的body消息体

目录 需求背景: 示例: 解决方式: 需求背景: 用shell解析 curl命令GET到的消息体,获取body消息体里的某个字段的值,只是个简单的示例,可以在此基础上更改满足自己的需求 示例: curl一个API…

使用CSS计算高度铺满屏幕

前言 今天写项目时出现高度设置百分百却不占满屏幕,第一反应看自己设置的是块级元素还是行级元素。看了几篇博客,发现并不能解决问题。脱离文档流的做法都没考虑,前期模板搭建脱离文档流,后面开发会出现很多问题。 以上图片是我…

【EI会议征稿通知】2024年第三届能源互联网及能源交互技术国际会议(EIEIT 2024)

2024年第三届能源互联网及能源交互技术国际会议(EIEIT 2024) 2024 3rd International Conference on the Energy Internet and Energy Interactive Technology 随着EIEIT前2届的成功举办,我们很荣幸地宣布,2024年第三届能源互联网及能源交互技术国际学术…

HCIA——12题目-1章选择

学习目标: 计算机网络 1.掌握计算机网络的基本概念、基本原理和基本方法。 2.掌握计算机网络的体系结构和典型网络协议,了解典型网络设备的组成和特点,理解典型网络设备的工作原理。 3.能够运用计算机网络的基本概念、基本原理和基本方法进行…

FPGA之LUT

由于FPGA需要被反复烧写,它实现组合逻辑的基本结构不可能像ASIC那样通过固定的与非门来完成,而只能采用一种易于反复配置的结构。查找表可以很好地满足这一要求,目前主流FPGA都采用了基于SRAM工艺的查找表结构。LUT本质上就是一个RAM.它把数据事先写入RAM后,每当输入一个信号就…

【Mybatis】说一下 mybatis 的一级缓存和二级缓存

​ 🍎个人博客:个人主页 🏆个人专栏:Mybatis ⛳️ 功不唐捐,玉汝于成 ​ 目录 前言 正文 一级缓存(Local Cache): 范围: 生命周期: 默认开启&…

PyTorch Tutorial 2.0

这里是对于PyTorch Tutorial-CSDN博客的补充,但是与其相关的NLP内容无关,只是一些基础的PyTorch用法的记录,主要目的是能够自己生成一些模拟的数据集。先介绍随机数的目的是因为based on随机数方法。 当然在看随机数的方法的时候&#xff0c…

彻底解决charles抓包https乱码的问题

最近做js逆向,听说charles比浏览器抓包更好用,结果发现全是乱码,根本没法用。 然后查询网上水文:全部都是装证书,根本没用! 最后终于找到解决办法,在这里记录一下: 乱码的根本原因…

c++可调用对象、function类模板与std::bind

函数调用与函数调用运算符 先写一个简单的函数&#xff0c;如下&#xff1a; /*函数的定义*/ int func(int i) {cout<<"这是一个函数\t"<<i<<endl; }void test() {func(1);//函数的调用 } 通过这个普通的函数可以看到&#xff0c;调用一个函数很…

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理

1 读取数据 轨迹数据质量分析 这一部分和 transbigdata笔记&#xff1a;data_summary 轨迹数据质量/采样间隔分析-CSDN博客 的举例是一样的 import pandas as pd import geopandas as gpd import transbigdata as tbddata pd.read_csv(Downloads/TaxiData-Sample.csv, names…

微服务实战项目_天机学堂01_初识项目

文章目录 一.项目简述二.Jenkins三.模拟真实业务:紧急bug修复和代码阅读四.测试和部署五.代码阅读-获取登录用户 一.项目简述 Q:天机学堂是什么? A:天机学堂是一个基于微服务架构的生产级在线教育项目 主要有两个端(项目已上线,可以点击查看): 管理后台: https://tjxt-admi…

项目配置集成unocss指南

项目配置集成 unocss 指南 什么是 UnoCSS&#xff1f; Unocss 是一个基于 Tailwind CSS的工具 &#xff0c;它通过静态分析 HTML 和 CSS 代码&#xff0c;自动消除未使用的样式&#xff0c;以减小生成的 CSS 文件大小。这个工具可以帮助开发者在使用 Tailwind CSS 进行开发时…

【linux】visudo

碎碎念 visudo命令是用来修改一个叫做 /etc/sudoers 的文件的&#xff0c;用来设置哪些 用户 和 组 可以使用sudo命令。并且使用visudo而不是使用 vi /etc/sudoers 的原因在于&#xff1a;visudo自带了检查功能&#xff0c;可以判断是否存在语法问题&#xff0c;所以更加安全 …