C语言从入门到实战——动态内存管理

动态内存管理

  • 前言
  • 一、 为什么要有动态内存分配
  • 二、 malloc和free
    • 2.1 malloc
    • 2.2 free
  • 三、calloc和realloc
    • 3.1 calloc
    • 3.2 realloc
  • 四、常见的动态内存的错误
    • 4.1 对NULL指针的解引用操作
    • 4.2 对动态开辟空间的越界访问
    • 4.3 对非动态开辟内存使用free释放
    • 4.4 使用free释放一块动态开辟内存的一部分
    • 4.5 对同一块动态内存多次释放
    • 4.6 动态开辟内存忘记释放(内存泄漏)
  • 五、动态内存经典笔试题分析
    • 5.1 题目1:
    • 5.2 题目2:
    • 5.3 题目3:
    • 5.4 题目4:
  • 六、 柔性数组
    • 6.1 柔性数组的特点:
    • 6.2 柔性数组的使用
    • 6.3 柔性数组的优势
  • 七、 总结C/C++中程序内存区域划分


前言

在C语言中,动态内存管理是指程序运行时,通过调用特定的函数动态地分配和释放内存空间。动态内存管理允许程序在运行时根据实际需要来分配内存,避免了静态内存分配在编译时就确定固定大小的限制。

C语言中动态内存管理主要通过以下两个函数来实现:

  1. malloc函数:malloc函数用于动态分配内存空间,其函数原型为void *malloc(size_t size)。该函数从堆中分配size个字节的连续内存空间,并返回指向该内存空间的首字节的指针。如果分配失败,则返回NULL

  2. free函数:free函数用于释放之前通过malloc函数分配的内存空间,其函数原型为void free(void *ptr)。该函数将ptr指针所指向的内存空间释放,并将该内存空间标记为可用,可以被后续的malloc函数重新分配。

使用mallocfree函数可以实现动态内存的分配和释放,但需要注意以下几点:

  1. 使用malloc函数分配内存后,需要检查返回值是否为NULL,以确保内存分配成功。如果返回值为NULL,说明内存分配失败。

  2. 在使用完动态分配的内存后,需要及时调用free函数释放内存空间,避免内存泄漏。

  3. 动态内存分配后,需要确保在不再使用该内存空间时释放内存,否则会造成内存泄漏,导致程序运行过程中内存不断被占用,最终导致系统内存耗尽。

  4. 动态内存分配的空间大小可以根据实际需要进行调整,灵活地满足程序的需求。

总的来说,C语言的动态内存管理能够提供灵活的内存分配和释放机制,可以有效地管理内存资源,提高程序的执行效率和可扩展性。但在使用过程中,需要注意合理分配和释放内存,并避免内存泄漏的问题。


一、 为什么要有动态内存分配

我们已经掌握的内存开辟方式有:

int val = 20; //在栈空间上开辟四个字节
char arr[10] = {0}; //在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

  • 空间开辟大小是固定的。
  • 数组在申明的时候,必须指定数组的长度,数组空间一旦确定了大小不能调整

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。

C语言引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了。

二、 malloc和free

2.1 malloc

C语言提供了一个动态内存开辟的函数:

void* malloc (size_t size); 

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个 NULL 指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
  • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

malloc生成的空间是在堆区
在这里插入图片描述
使用malloc开辟0空间是没有意义的,不同编译器会出现不同的结果

int * p = (int* )malloc(0);
if(p == NULL)
{
	perror("malloc : ");
	return 1;
	}

2.2 free

C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:

void free (void* ptr);

free函数用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptrNULL指针,则函数什么事都不做。

mallocfree都声明在 stdlib.h 头文件中。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int num = 0;
	scanf("%d", &num);
	int arr[num] = {0};
	int* ptr = NULL;
	ptr = (int*)malloc(num*sizeof(int));
	if(NULL != ptr) //判断ptr指针是否为空
	{
	int i = 0;
		for(i=0; i<num; i++)
		{
			*(ptr+i) = 0}
	}
	free(ptr); //释放ptr所指向的动态内存
	ptr = NULL; //是否有必要?
	return 0;
}

free 会将开辟的空间返回,但是p 还是指向那个空间的起始位置,所以我们需要将p置为NULL,才保证不会出现野指针

	释放空间
free(p);
p = NULL;

三、calloc和realloc

3.1 calloc

C语言还提供了一个函数叫 calloccalloc 函数也用来动态内存分配。

原型如下:

void* calloc (size_t num, size_t size);
  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int *p = (int*)calloc(10, sizeof(int));
	if(NULL != p)
	{
		int i = 0;
		for(i=0; i<10; i++)
		{
			printf("%d ", *(p+i));
		}
	}
	free(p);
	p = NULL;
	return 0;
}

输出结果:

0 0 0 0 0 0 0 0 0 0 

在这里插入图片描述

所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

3.2 realloc

  • realloc函数的出现让动态内存管理更加灵活。
  • 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。

函数原型如下:

void* realloc (void* ptr, size_t size); 

ptr 是要调整的内存地址

  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
  • realloc在调整内存空间的是存在两种情况:
    • 情况1:原有空间之后有足够大的空间
    • 情况2:原有空间之后没有足够大的空间

在这里插入图片描述
情况1
当是情况1的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

情况2
当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。

由于上述的两种情况,realloc函数的使用就要注意一些。

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int *ptr = (int*)malloc(100);
	if(ptr != NULL)
	{
		//业务处理
	}
	else
	{
		return 1;
	}
	//扩展容量
	//代码1 - 直接将realloc的返回值放到ptr中
	ptr = (int*)realloc(ptr, 1000); //这样可以吗?(如果申请失败会如何?)
	//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中
	int*p = NULL;
	p = realloc(ptr, 1000);
	if(p != NULL)
	{
		ptr = p;
	}
	//业务处理
	free(ptr);
	return 0;
}

realloc 使用要基于已开辟的空间,及被malloccallocrealloc开辟过,realloc除了开辟空间外,还可以实现和malloc一样的功能

int* p = (int* )realloc(NULL,100); //等价于int* p = (int* )malloc(100);
if(p == NULL)
{ 
 	perror(" realloc :");
 	}
 free(p);
 p = NULL;

在VS2022中,出现如图所示的情况,一般都是没有进行开辟空间没有判断,但也会出现编译器自己识别错误的原因,因为机器始终不是万能的,所有的事物都会出现一些bug。

在这里插入图片描述

四、常见的动态内存的错误

4.1 对NULL指针的解引用操作

没有对开辟空间是否为空进行判断

void test()
{
	int *p = (int *)malloc(INT_MAX/4);
	*p = 20; //如果p的值是NULL,就会有问题
	free(p);
}

4.2 对动态开辟空间的越界访问

void test()
{
	int i = 0;
	int *p = (int *)malloc(10*sizeof(int));
	if(NULL == p)
	{
		exit(EXIT_FAILURE);
	}
	for(i=0; i<=10; i++)
	{
		*(p+i) = i; //当i是10的时候越界访问
	}
	free(p);
}

4.3 对非动态开辟内存使用free释放

free函数只能释放堆区的内存,不能释放栈区的内存。根据引用和引用的内容,可以得出以下结论:

  1. free函数不能释放在栈上开辟的内存。因为栈上的内存是由系统自动管理的,不需要手动释放。
  2. free函数主要用于释放malloccalloc和realloc函数动态分配的堆内存。
  3. delete操作符一般用于释放new操作符动态分配的堆内存。

所以,free函数只能释放堆区的内存,不能释放栈区的内存。

void test()

{
	int a = 10;
	int *p = &a;
	free(p); //ok?
}

4.4 使用free释放一块动态开辟内存的一部分

系统释放空间的方式有两种:第一种是在栈区上,系统会在程序结束后自己释放,第二种便是堆区
在这里插入图片描述

void test()
{
	int *p = (int *)malloc(100);
	p++;
	free(p); //p不再指向动态内存的起始位置
}

4.5 对同一块动态内存多次释放

void test()
{
	int *p = (int *)malloc(100);
	free(p);
	free(p); //重复释放
}

4.6 动态开辟内存忘记释放(内存泄漏)

void test()
{
	int *p = (int *)malloc(100);
	if(NULL != p)
	{
		*p = 20;
	}
}
int main()
{
	test();
	while(1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放。

五、动态内存经典笔试题分析

5.1 题目1:

调用函数传入指针,都是一级指针,按照变量来理解,需要用到二级指针来接收地址,不然如下p只是str的一份临时拷贝,而改变不了str

void GetMemory(char *p)
{
	p = (char *)malloc(100);
}

void Test(void)
{
	char *str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}

请问运行Test函数会有什么样的结果?
在这里插入图片描述

5.2 题目2:

p是临时变量,从函数出去后,系统会自动释放空间

char *GetMemory(void)
{
	char p[] = "hello world";
	return p;
}
void Test(void)
{
	char *str = NULL;
	str = GetMemory();
	printf(str);
}

请问运行Test函数会有什么样的结果?
在这里插入图片描述

5.3 题目3:

malloc函数是可以使用变量的

void GetMemory(char **p, int num)
{
	*p = (char *)malloc(num);
}
void Test(void)
{
	char *str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

请问运行Test函数会有什么样的结果?

5.4 题目4:

void Test(void)
{
	char *str = (char *) malloc(100);
	strcpy(str, "hello");
	free(str);
	if(str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}

请问运行Test函数会有什么样的结果?

六、 柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。

在C99中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

例如:

typedef struct st_type
{
	int i;
	int a[0]; //柔性数组成员
}type_a;

有些编译器会报错无法编译可以改成:

typedef struct st_type
{
	int i;
	int a[]; //柔性数组成员
}type_a;

6.1 柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

typedef struct st_type
{
	int i;
	int a[0]; //柔性数组成员
}type_a;
int main()
{
	printf("%d\n", sizeof(type_a)); //输出的是4
	return 0;
}

6.2 柔性数组的使用


//代码1
#include <stdio.h>
#include <stdlib.h>
typedef struct st_type
{
	int i;
	int a[0]; //柔性数组成员
}type_a;
int main()
{
	int i = 0;
	type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
	//业务处理
	p->i = 100;
	for(i=0; i<100; i++)
	{
		p->a[i] = i;
	}
	free(p);
	return 0;
}

这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

6.3 柔性数组的优势

上述的type_a结构也可以设计为下面的结构,也能完成同样的效果。

//代码2
#include <stdio.h>
#include <stdlib.h>
typedef struct st_type
{
	int i;
	int *p_a;
}type_a;
int main()
{
	type_a *p = (type_a *)malloc(sizeof(type_a));
	p->i = 100;
	p->p_a = (int *)malloc(p->i*sizeof(int));
	//业务处理
	for(i=0; i<100; i++)
	{
		p->p_a[i] = i;
	}
	//释放空间
	free(p->p_a);
	p->p_a = NULL;
	free(p);
	p = NULL;
	return 0;
}

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第⼆个好处是:这样有利于访问速度.

连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

扩展阅读:C语⾔结构体⾥的数组和指针

七、 总结C/C++中程序内存区域划分

在这里插入图片描述

C/C++程序内存分配的几个区域:

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
  2. 堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。
  3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/330907.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

赤藓糖醇行业研究:预计2029年将达到3.5亿美元

赤藓糖醇是一种四碳糖醇&#xff0c;存在于多种食物中&#xff0c;如葡萄、梨、西瓜等&#xff0c;可由微生物发酵法和化学合成法两种方法制备&#xff0c;目前商业化生产中均采用微生物发酵法。赤藓糖醇由葡萄糖发酵制作而成&#xff0c;上游原料主要包括葡萄糖、玉米淀粉糖和…

Android中的anr定位指导与建议

1.背景 8月份安卓出现了一次直播间卡死(ANR)问题&#xff0c;且由于排查难度较大&#xff0c;持续了较长时间。本文针对如何快速定位安卓端出现ANR问题进行总结和探讨. 这里大致补充一下当时的情况,当时看到情景的是从某一个特定的场景下进入直播间后整个直播间界面立刻就卡住…

23年11月移动广告行业大盘趋势,借鉴双 11 ,年货节该如何提高广告收益

前言 年货节开始啦&#xff0c;我们可以借鉴2023年双11期间的广告大盘趋势&#xff0c;洞悉如何在大型促销期间调整广告运营策略以提升效果。年货节是一个绝佳的时机&#xff0c;可以利用在双11期间积累的经验和策略&#xff0c;进行相应的调整和优化。通过精准定位广告投放高…

Elasticsearch:和 LIamaIndex 的集成

LlamaIndex 是一个数据框架&#xff0c;供 LLM 应用程序摄取、构建和访问私有或特定领域的数据。 LlamaIndex 是开源的&#xff0c;可用于构建各种应用程序。 在 GitHub 上查看该项目。 安装 在 Docker 上设置 Elasticsearch 使用以下 docker 命令启动单节点 Elasticsearch 实…

maven无法识别本地maven仓库包解决方案

前言&#xff1a;由于本地maven仓库已经有了相关依赖包&#xff0c;idea还是去远程仓库下载(不知何原因&#xff0c;生产上到远程仓库的网络突然不通了)&#xff0c;故需要自己本地上传相关包到生产主机并修改setttings文件来强制读取本地仓库方案 settings文件修改如下方式即…

iPad如何连接到Wi-Fi,这里提供详细步骤

这篇文章解释了如何将iPad连接到Wi-Fi&#xff0c;无论是公共Wi-Fi网络还是需要密码的专用网络。 将iPad连接到Wi-Fi 当你想让iPad联机时&#xff0c;请按照以下步骤连接到Wi-Fi&#xff1a; 1、在iPad的主屏幕上&#xff0c;点击设置。 2、点击Wi-Fi。 3、要启动iPad搜索附…

数据库作业三

1.创建student和score表 2.为student表和score表增加记录 3.查询student表的所有记录 4.查询student表的第2条到4条记录 5.从student表查询所有学生的学号&#xff08;id&#xff09;、姓名&#xff08;name&#xff09;和院系&#xff08;department&#xff09;的信息 6.从st…

Zabbix6.4 图形乱码怎么办

Zabbix6.4 图形乱码怎么办 Zabbix6.4 安装后&#xff0c;进入主机图形展示&#xff0c;你会发现文字部分乱成了乱码。 找一台Microsoft Windows 7/10/11的电脑&#xff0c;打开C:\Windows\Fonts 找到【楷体 常规】&#xff0c;将字体复制到桌面。 桌面上就会多出simkai.ttf字…

5.2 基于深度学习和先验状态的实时指纹室内定位

文献来源 Nabati M, Ghorashi S A. A real-time fingerprint-based indoor positioning using deep learning and preceding states[J]. Expert Systems with Applications, 2023, 213: 118889.&#xff08;5.2_基于指纹的实时室内定位&#xff0c;使用深度学习和前一状态&…

抖音弹幕直播玩法汉字找不同文字找不同无人值执守自动玩游戏自带语音播报的开发日志

#找不同# 要解决如下几个问题&#xff1a; 1.声音sprite的录制和调用&#xff0c;解决方案以及解决库如下&#xff1a; howler.min.js://一款不错的音频播放js库。 2.鼠标自动飘浮,使用的库 anime.min.js 3.资源预加载 preload.min.js 4.其它使用到的库 jquery,vue

Docker安装开源Blog(Typecho)

前言 首先这个镜像是centos7.9进行安装PHP环境&#xff0c;然后挂载目录去运行的&#xff0c;镜像大概300MB左右&#xff0c;没学过PHP&#xff0c;没办法给Dockerfile文件 参考文章&#xff1a;Docker安装Typecho | D-y Blog感知不强&#xff0c;图一乐https://www.wlul.top…

开放式耳机哪个品牌好?2024最新开放式耳机选购指南!实测避雷!

如果你是一个对音质和舒适度有要求的人&#xff0c;那么你一定要看看开放式耳机了&#xff0c;开放式耳机不是像封闭式耳机那样堵着耳朵&#xff0c;它能够提供更宽广的音场和更自然声音&#xff0c;佩戴也更加舒适&#xff0c;那么哪个品牌的开放式耳机最好呢&#xff1f;接下…

新能源汽车智慧充电桩解决方案:智慧化综合管理与数字化高效运营

一、方案概述 TSINGSEE青犀&触角云新能源汽车智慧充电桩解决方案基于管理运营平台&#xff0c;覆盖业务与应用、数据传输与梳理、多端开发、搭建等模块&#xff0c;融合AI、5G、Wi-Fi 、移动支付等技术&#xff0c;实现充电基础设施由数字化向智能化演进&#xff0c;通过构…

使用Go语言处理Excel文件的完整指南

xcel文件是广泛用于存储和处理数据的常见文件格式。在Go语言中&#xff0c;有许多库和工具可用于处理Excel文件。本文将介绍如何使用Go语言处理Excel文件&#xff0c;包括读取、写入和修改Excel文件&#xff0c;以及处理单元格、行和列等操作。无论是从头开始创建Excel文件&…

【开源】基于JAVA语言的快乐贩卖馆管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 搞笑视频模块2.3 视频收藏模块2.4 视频评分模块2.5 视频交易模块2.6 视频好友模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 搞笑视频表3.2.2 视频收藏表3.2.3 视频评分表3.2.4 视频交易表 四、系…

Solidbi仪表板介绍

效果图 设计界面 设计过程 首先配置数据源连接&#xff08;如数据不是关系型数据库的不需要配置&#xff09;新建数据集&#xff0c;编写sql查询数据&#xff1b;系统数据集支持SQL、EXCEL、SPL、RPX、JAVA等数据集。数据集中支持查询后的数据再次进行计算&#xff0c;满足复杂…

区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…

Leetcode:128. 最长连续序列

128. 最长连续序列 乍一看感觉很简单&#xff0c;一看要用O(n)??? 因为我觉得题目很难而且题目看起来很简单&#xff0c;感觉以后会用到&#x1f606;&#xff0c;做个记录 1.朴素做法 思路 答:任何一段连续的数都有一个左端点&#xff1a;比如&#xff08;1&#xff0c;…

【树莓派】网线远程连接电脑和树莓派,实现SSH连接

目录 1、硬件连接&#xff1b; 2、电脑端&#xff1a; 3、查找树莓派的IP地址 4、开启树莓派的SSH接口 5、putty 6、命令行 参考文章 通过网线连接笔记本与树莓派 开启SSH和VNC功能 无显示器安装树莓派 实现&#xff1a;打开putty输入树莓派地址使用ssh方式登陆&…

Docker与Docker Compose入门:释放你的应用部署的威力

嘿&#xff0c;大家好&#xff01;今天给大家介绍一项强大而有趣的技能&#xff0c;那就是使用 Docker 和 Docker Compose 来释放你的应用部署的威力&#xff01;无论你是一名开发人员还是系统管理员&#xff0c;掌握这个技能都将为你的工作带来巨大的好处。 本文大纲如下&…