【RT-DETR有效改进】轻量级视觉变换器RepViT改进特征提取网络(轻量化网络)

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   


一、本文介绍

本位给大家带来的改进机制是RepViT。它是一种最新发布的网络结构,把轻量级的视觉变换器(就是ViT)的设计理念融入到了我们常用的轻量级卷积神经网络(CNN)里。我尝试把它用在RT-DETR的主干网络上,效果还不错,mAP有一定的提高。我用的是这个网络中最轻量级的版本。 我将其用于在我的数据上实验(包含多个类别其中包含大中小多个目标类别),无论哪种目标,精度均有所提升。接下来,我会展示一下原始版本和我改进后版本在训练上的对比图。之后会在文章中介绍该网络结构,然后教大家如何修改该网络结构,同时修改该主干参数量下降四分之一相对于ResNet18。

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

一、本文介绍

三、RepViT的核心代码 

四、手把手教你添加RepViT网络结构

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、RepViT的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、RepViT基本原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转

​​ 


RepViT: Revisiting Mobile CNN From ViT Perspective 这篇论文探讨了如何改进轻量级卷积神经网络(CNN)以提高其在移动设备上的性能和效率。作者们发现,虽然轻量级视觉变换器(ViT)因其能够学习全局表示而表现出色,但轻量级CNN和轻量级ViT之间的架构差异尚未得到充分研究。因此,他们通过整合轻量级ViT的高效架构设计,逐步改进标准轻量级CNN(特别是MobileNetV3),从而创造了一系列全新的纯CNN模型,称为RepViT。这些模型在各种视觉任务上表现出色,比现有的轻量级ViT更高效。

其主要的改进机制包括:

  1. 结构性重组:通过结构性重组(Structural Re-parameterization, SR),引入多分支拓扑结构,以提高训练时的性能。

  2. 扩展比率调整:调整卷积层中的扩展比率,以减少参数冗余和延迟,同时提高网络宽度以增强模型性能。

  3. 宏观设计优化:对网络的宏观架构进行优化,包括早期卷积层的设计、更深的下采样层、简化的分类器,以及整体阶段比例的调整。

  4. 微观设计调整:在微观架构层面进行优化,包括卷积核大小的选择和压缩激励(SE)层的最佳放置。

这些创新机制共同推动了轻量级CNN的性能和效率,使其更适合在移动设备上使用,下面的是官方论文中的结构图,我们对其进行简单的分析。

这张图片是论文中的图3,展示了RepViT架构的总览。RepViT有四个阶段,输入图像的分辨率依次为

每个阶段的通道维度用 Ci​ 表示,批处理大小用 B 表示。 

  • Stem:用于预处理输入图像的模块。
  • Stage1-4:每个阶段由多个RepViTBlock组成,以及一个可选的RepViTSEBlock,包含深度可分离卷积(3x3DW),1x1卷积,压缩激励模块(SE)和前馈网络(FFN)。每个阶段通过下采样减少空间维度。
  • Pooling:全局平均池化层,用于减少特征图的空间维度。
  • FC:全连接层,用于最终的类别预测。

 总结:大家可以将RepViT看成是MobileNet系列的改进版本

三、RepViT的核心代码 

下面的代码是整个RepViT的核心代码,其中有多个版本,对应的GFLOPs也不相同,使用方式看章节四。

import torch.nn as nn
from timm.models.layers import SqueezeExcite
import torch

__all__ = ['repvit_m0_6','repvit_m0_9', 'repvit_m1_0', 'repvit_m1_1', 'repvit_m1_5', 'repvit_m2_3']

def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class Conv2d_BN(torch.nn.Sequential):
    def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
                 groups=1, bn_weight_init=1, resolution=-10000):
        super().__init__()
        self.add_module('c', torch.nn.Conv2d(
            a, b, ks, stride, pad, dilation, groups, bias=False))
        self.add_module('bn', torch.nn.BatchNorm2d(b))
        torch.nn.init.constant_(self.bn.weight, bn_weight_init)
        torch.nn.init.constant_(self.bn.bias, 0)

    @torch.no_grad()
    def fuse_self(self):
        c, bn = self._modules.values()
        w = bn.weight / (bn.running_var + bn.eps) ** 0.5
        w = c.weight * w[:, None, None, None]
        b = bn.bias - bn.running_mean * bn.weight / \
            (bn.running_var + bn.eps) ** 0.5
        m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
            0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation,
                            groups=self.c.groups,
                            device=c.weight.device)
        m.weight.data.copy_(w)
        m.bias.data.copy_(b)
        return m


class Residual(torch.nn.Module):
    def __init__(self, m, drop=0.):
        super().__init__()
        self.m = m
        self.drop = drop

    def forward(self, x):
        if self.training and self.drop > 0:
            return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
                                              device=x.device).ge_(self.drop).div(1 - self.drop).detach()
        else:
            return x + self.m(x)

    @torch.no_grad()
    def fuse_self(self):
        if isinstance(self.m, Conv2d_BN):
            m = self.m.fuse_self()
            assert (m.groups == m.in_channels)
            identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
            identity = torch.nn.functional.pad(identity, [1, 1, 1, 1])
            m.weight += identity.to(m.weight.device)
            return m
        elif isinstance(self.m, torch.nn.Conv2d):
            m = self.m
            assert (m.groups != m.in_channels)
            identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
            identity = torch.nn.functional.pad(identity, [1, 1, 1, 1])
            m.weight += identity.to(m.weight.device)
            return m
        else:
            return self


class RepVGGDW(torch.nn.Module):
    def __init__(self, ed) -> None:
        super().__init__()
        self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed)
        self.conv1 = torch.nn.Conv2d(ed, ed, 1, 1, 0, groups=ed)
        self.dim = ed
        self.bn = torch.nn.BatchNorm2d(ed)

    def forward(self, x):
        return self.bn((self.conv(x) + self.conv1(x)) + x)

    @torch.no_grad()
    def fuse_self(self):
        conv = self.conv.fuse_self()
        conv1 = self.conv1

        conv_w = conv.weight
        conv_b = conv.bias
        conv1_w = conv1.weight
        conv1_b = conv1.bias

        conv1_w = torch.nn.functional.pad(conv1_w, [1, 1, 1, 1])

        identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device),
                                           [1, 1, 1, 1])

        final_conv_w = conv_w + conv1_w + identity
        final_conv_b = conv_b + conv1_b

        conv.weight.data.copy_(final_conv_w)
        conv.bias.data.copy_(final_conv_b)

        bn = self.bn
        w = bn.weight / (bn.running_var + bn.eps) ** 0.5
        w = conv.weight * w[:, None, None, None]
        b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / \
            (bn.running_var + bn.eps) ** 0.5
        conv.weight.data.copy_(w)
        conv.bias.data.copy_(b)
        return conv


class RepViTBlock(nn.Module):
    def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
        super(RepViTBlock, self).__init__()
        assert stride in [1, 2]

        self.identity = stride == 1 and inp == oup
        assert (hidden_dim == 2 * inp)

        if stride == 2:
            self.token_mixer = nn.Sequential(
                Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp),
                SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
                Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
            )
            self.channel_mixer = Residual(nn.Sequential(
                # pw
                Conv2d_BN(oup, 2 * oup, 1, 1, 0),
                nn.GELU() if use_hs else nn.GELU(),
                # pw-linear
                Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
            ))
        else:
            assert (self.identity)
            self.token_mixer = nn.Sequential(
                RepVGGDW(inp),
                SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
            )
            self.channel_mixer = Residual(nn.Sequential(
                # pw
                Conv2d_BN(inp, hidden_dim, 1, 1, 0),
                nn.GELU() if use_hs else nn.GELU(),
                # pw-linear
                Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
            ))

    def forward(self, x):
        return self.channel_mixer(self.token_mixer(x))


class RepViT(nn.Module):
    def __init__(self, cfgs):
        super(RepViT, self).__init__()
        # setting of inverted residual blocks
        self.cfgs = cfgs

        # building first layer
        input_channel = self.cfgs[0][2]
        patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(),
                                          Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1))
        layers = [patch_embed]
        # building inverted residual blocks
        block = RepViTBlock
        for k, t, c, use_se, use_hs, s in self.cfgs:
            output_channel = _make_divisible(c, 8)
            exp_size = _make_divisible(input_channel * t, 8)
            layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
            input_channel = output_channel
        self.features = nn.ModuleList(layers)
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x):
        # x = self.features(x
        results = [None, None, None, None]
        temp = None
        i = None
        for index, f in enumerate(self.features):
            x = f(x)
            if index == 0:
                temp = x.size(1)
                i = 0
            elif x.size(1) == temp:
                results[i] = x
            else:
                temp = x.size(1)
                i = i + 1
        return results



def repvit_m0_6():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        [3,   2,  40, 1, 0, 1],
        [3,   2,  40, 0, 0, 1],
        [3,   2,  80, 0, 0, 2],
        [3,   2,  80, 1, 0, 1],
        [3,   2,  80, 0, 0, 1],
        [3,   2,  160, 0, 1, 2],
        [3,   2, 160, 1, 1, 1],
        [3,   2, 160, 0, 1, 1],
        [3,   2, 160, 1, 1, 1],
        [3,   2, 160, 0, 1, 1],
        [3,   2, 160, 1, 1, 1],
        [3,   2, 160, 0, 1, 1],
        [3,   2, 160, 1, 1, 1],
        [3,   2, 160, 0, 1, 1],
        [3,   2, 160, 0, 1, 1],
        [3,   2, 320, 0, 1, 2],
        [3,   2, 320, 1, 1, 1],
    ]
    model = RepViT(cfgs)
    return model


def repvit_m0_9():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s
        [3, 2, 48, 1, 0, 1],
        [3, 2, 48, 0, 0, 1],
        [3, 2, 48, 0, 0, 1],
        [3, 2, 96, 0, 0, 2],
        [3, 2, 96, 1, 0, 1],
        [3, 2, 96, 0, 0, 1],
        [3, 2, 96, 0, 0, 1],
        [3, 2, 192, 0, 1, 2],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 1, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 192, 0, 1, 1],
        [3, 2, 384, 0, 1, 2],
        [3, 2, 384, 1, 1, 1],
        [3, 2, 384, 0, 1, 1]
    ]
    model = RepViT(cfgs)
    return model


def repvit_m1_0():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s
        [3, 2, 56, 1, 0, 1],
        [3, 2, 56, 0, 0, 1],
        [3, 2, 56, 0, 0, 1],
        [3, 2, 112, 0, 0, 2],
        [3, 2, 112, 1, 0, 1],
        [3, 2, 112, 0, 0, 1],
        [3, 2, 112, 0, 0, 1],
        [3, 2, 224, 0, 1, 2],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 1, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 224, 0, 1, 1],
        [3, 2, 448, 0, 1, 2],
        [3, 2, 448, 1, 1, 1],
        [3, 2, 448, 0, 1, 1]
    ]
    model = RepViT(cfgs)
    return model


def repvit_m1_1():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s
        [3, 2, 64, 1, 0, 1],
        [3, 2, 64, 0, 0, 1],
        [3, 2, 64, 0, 0, 1],
        [3, 2, 128, 0, 0, 2],
        [3, 2, 128, 1, 0, 1],
        [3, 2, 128, 0, 0, 1],
        [3, 2, 128, 0, 0, 1],
        [3, 2, 256, 0, 1, 2],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 512, 0, 1, 2],
        [3, 2, 512, 1, 1, 1],
        [3, 2, 512, 0, 1, 1]
    ]
    model = RepViT(cfgs)
    return model


def repvit_m1_5():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s
        [3, 2, 64, 1, 0, 1],
        [3, 2, 64, 0, 0, 1],
        [3, 2, 64, 1, 0, 1],
        [3, 2, 64, 0, 0, 1],
        [3, 2, 64, 0, 0, 1],
        [3, 2, 128, 0, 0, 2],
        [3, 2, 128, 1, 0, 1],
        [3, 2, 128, 0, 0, 1],
        [3, 2, 128, 1, 0, 1],
        [3, 2, 128, 0, 0, 1],
        [3, 2, 128, 0, 0, 1],
        [3, 2, 256, 0, 1, 2],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 1, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 256, 0, 1, 1],
        [3, 2, 512, 0, 1, 2],
        [3, 2, 512, 1, 1, 1],
        [3, 2, 512, 0, 1, 1],
        [3, 2, 512, 1, 1, 1],
        [3, 2, 512, 0, 1, 1]
    ]
    model = RepViT(cfgs)
    return model


def repvit_m2_3():
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s
        [3, 2, 80, 1, 0, 1],
        [3, 2, 80, 0, 0, 1],
        [3, 2, 80, 1, 0, 1],
        [3, 2, 80, 0, 0, 1],
        [3, 2, 80, 1, 0, 1],
        [3, 2, 80, 0, 0, 1],
        [3, 2, 80, 0, 0, 1],
        [3, 2, 160, 0, 0, 2],
        [3, 2, 160, 1, 0, 1],
        [3, 2, 160, 0, 0, 1],
        [3, 2, 160, 1, 0, 1],
        [3, 2, 160, 0, 0, 1],
        [3, 2, 160, 1, 0, 1],
        [3, 2, 160, 0, 0, 1],
        [3, 2, 160, 0, 0, 1],
        [3, 2, 320, 0, 1, 2],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 320, 1, 1, 1],
        [3, 2, 320, 0, 1, 1],
        # [3,   2, 320, 1, 1, 1],
        # [3,   2, 320, 0, 1, 1],
        [3, 2, 320, 0, 1, 1],
        [3, 2, 640, 0, 1, 2],
        [3, 2, 640, 1, 1, 1],
        [3, 2, 640, 0, 1, 1],
        # [3,   2, 640, 1, 1, 1],
        # [3,   2, 640, 0, 1, 1]
    ]
    model = RepViT(cfgs)
    return model

四、手把手教你添加RepViT网络结构

下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第  步即可。

⭐修改过程中大家一定要仔细⭐


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七

修改七这里非常要注意,不是文件开头YOLOv8的那predict是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、RepViT的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, repvit_m0_9, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/332046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库MySQL----多表查询

二、多表查询 1.创建student和score表 CREATE TABLE student ( id INT(10) NOT NULL UNIQUE PRIMARY KEY , name VARCHAR(20) NOT NULL , sex VARCHAR(4) , birth YEAR, department VARCHAR(20) , address VARCHAR(50) ); CREATE TABLE score ( id INT(10) NOT…

翻遍全网才找到的Oracle19c安装教程(Windows版)

一、下载 官方地址&#xff1a;Database Software Downloads | Oracle 中国 我下载下来了&#xff0c;有需要的可以网盘领取。 链接&#xff1a;https://pan.baidu.com/s/1-OeiuoBX3K4X7Kw7vGxdFA?pwdhssy 提取码&#xff1a;hssy 二、解压 下载下来是一个zip格式的压缩…

Java爬虫爬取图片壁纸

Java爬虫 以sougou图片为例&#xff1a;https://pic.sogou.com/ JDK17、SpringBoot3.2.X、hutool5.8.24实现Java爬虫&#xff0c;爬取页面图片 项目介绍 开发工具&#xff1a;IDEA2023.2.5 JDK&#xff1a;Java17 SpringBoot&#xff1a;3.2.x 通过 SpringBoot 快速构建开发环境…

身份验证遇到问题,登陆ChatGPT时提示:“we ran into an issue while authenticating you…”

oops&#xff01; we ran into an issue while authenticating you, if this issue persists, please contact us through our help center at help.openai.com 说明&#xff1a;哎呀&#xff01;我们在验证您的身份时遇到了一个问题&#xff0c;如果这个问题仍然存在&#xff…

Linux:shell脚本:基础使用(8)《函数局部|全局变量函数传入位置变量return》

基本的函数定义 把一些重复调用的命令写进一个函数里&#xff0c;下次直接调用函数名&#xff0c;这样的既方便修改&#xff0c;又可以让思路清晰 function 函数名(){ 当调用这个函数时候执行的命令...... } 这个是一个基础的函数定义&#xff0c;当然你不加function也是可以的…

从 GPT1 - GPT4 拆解

从 GPT1 - GPT4 拆解 从 GPT1 - GPT4GPT1&#xff1a;更适用于文本生成领域GPT2&#xff1a;扩展数据集、模型参数&#xff0c;实现一脑多用&#xff08;多个任务&#xff09;GPT3&#xff1a;元学习 大力出奇迹InstructGPT&#xff1a;指示和提示学习 人工反馈强化学习 RLHF…

实验二 体系结构

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

Open3D 点云转深度图像

目录 一、算法原理1、算法过程2、主要函数二、代码实现三、结果展示1、点云2、深度图像四、测试数据Open3D 点云转深度图像由CSDN点云侠原创。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。<

TypeScript 中的深拷贝和浅拷贝

什么是深拷贝 在JavaScript/TypeScript中&#xff0c;深拷贝是指创建一个对象的副本&#xff0c;而不仅仅是创建对原始对象的引用。对复制的对象进行的任何更改都不会影响原始对象&#xff0c;反之亦然。 这个副本将完全复制基础对象&#xff0c;包括每个嵌套级别的所有属性和…

在vite5和vue3开发环境中使用jodit4富文本编辑器,并添加自定义插件和使用highlight.js实现代码块高亮(附其他自定义配置项和全部代码)

最近富文本编辑器jodit终于更新发布到了4.0版本&#xff0c;加入了css变量、有更好的typescript支持&#xff0c;截止发文时的版本是&#xff1a;4.0.5&#xff0c;看到有了新版本于是便想着将本地项目中的jodit版本也进行升级&#xff0c;琢磨着再丰富和添加一些功能&#xff…

excel 各种用法

excel 各种用法 实现两张表格数据关联 vlookup 实现两张表格数据关联 vlookup 实现两个 sheet 间的关联需要用 vlookup 函数实现 函数第一个参数设置成 sheet1 中的 A 列&#xff08;如果数据很多&#xff0c;可以直接选中 A 列&#xff09; 函数的第二个参数选中 sheet2 中…

android 和 opencv 开发环境搭建

本文详细说明给android项目添加opencv库的详细步骤&#xff0c;并通过实现图片灰度化来查看配置是否成功。 下载OPENCV ANDROID SDK 到官网下载 打开 https://opencv.org/releases/ 选择android&#xff0c;下载完成后解压出下面的文件&#xff1a; 安装android sdk 和 ndk …

YOLOv8全网首发:DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测

💡💡💡本文独家改进:DCNv4更快收敛、更高速度、更高性能,完美和YOLOv8结合,助力涨点 DCNv4优势:(1) 去除空间聚合中的softmax归一化,以增强其动态性和表达能力;(2) 优化存储器访问以最小化冗余操作以加速。这些改进显著加快了收敛速度,并大幅提高了处理速度,DCN…

【CSS】解决height = line-height 文字不垂直居中(偏上、偏下)的问题

解决办法1&#xff1a; 查看 font-family 属性&#xff0c;确认是否是因为字体而导致的不垂直居中问题。 其他小知识&#xff1a; 基线就是小写x字母的下边缘(线) 就是我们常说的 基线。line-height 属性设置的行高也就是定义的两行文字基线之间的距离! 参考文章&#xff1a;…

2017年认证杯SPSSPRO杯数学建模B题(第一阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 跨年龄人脸识别模型的建立与分析 B题 岁月的印记 原题再现&#xff1a; 对同一个人来说&#xff0c;如果没有过改变面容的疾病、面部外伤或外科手术等经历&#xff0c;年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两…

Java 方法中参数类型后写了三个点?什么意思?

1、...代表什么意思&#xff1f; 2、如何使用 3、注意事项 4、两个list&#xff0c;一个新的&#xff0c;一个旧的&#xff0c;旧列表中可能有新列表中存在的数据&#xff0c;也可能存在新列表中不存在的数据&#xff08;注&#xff1a;新旧列表中都不存在重复元素&#xff09;…

7.6 MySQL基本函数的使用(❤❤❤)

7.6 MySQL基本函数的使用 1. 提要2. 数字函数3. 字符函数3.1 替换字符3.2 左填充字符及截取字符串 4. 日期函数4.1 日期函数4.2 表达式占位符4.3 日期偏移计算4.4 日期间隔 5. 条件函数5.1 IF语句5.2 case...when语句 1. 提要 2. 数字函数 3. 字符函数 3.1 替换字符 -- INSERT…

水电站智能监测泄洪预警系统介绍

一、背景 近年来由于危险河道管理措施不到位&#xff0c;调峰电站泄水风险长期存在&#xff0c;信息通报制度缺失以及民众安全警觉性不高等因素导致的水电站在泄洪时冲走下游河道游客以及人民财产的事故频发。 二、系统介绍 水电站智能监测泄洪预警系统是一种集成了物联网、云…

C/C++ BM5 合并K个已排序的链表

文章目录 前言题目1 解决方案一1.1 思路阐述1.2 源码 2 解决方案二2.1 思路阐述2.2 源码 总结 前言 在接触了BM4的两个链表合并的情况&#xff0c;对于k个已排序列表&#xff0c;其实可以用合并的方法来看待问题。 这里第一种方法就是借用BM4的操作&#xff0c;只不过是多个合…

腾讯云服务器的介绍_云主机概览——腾讯云

腾讯云服务器CVM提供安全可靠的弹性计算服务&#xff0c;腾讯云明星级云服务器&#xff0c;弹性计算实时扩展或缩减计算资源&#xff0c;支持包年包月、按量计费和竞价实例计费模式&#xff0c;CVM提供多种CPU、内存、硬盘和带宽可以灵活调整的实例规格&#xff0c;提供9个9的数…
最新文章