Tensorflow 入门基础——向LLM靠近一小步

进入tensflow的系统学习,向LLM靠拢。

目录

  • 1. tensflow的数据类型
    • 1.1 数值类型
    • 1.2 字符串类型
    • 1.3 布尔类型的数据
  • 2. 数值精度
  • 3. 类型转换
    • 3.1 待优化的张量
  • 4 创建张量
    • 4.1 从数组、列表对象创建
    • 4.2 创建全0或者1张量
    • 4.3 创建自定义数值张量
  • 5. 创建已知分布的张量(正态和均匀分布)
  • 6 创建序列
  • 参考资料

1. tensflow的数据类型

1.1 数值类型

数值类型的张量是tensorflow主要的数据载体,根据维度数来区分,可分为:

  • 标量Scalar:单个实数,如1,2,3,4等,维度数为0,shape为[]
  • 向量Vector:n个实数的有序集合,如[1,2,5,62,21]等,维度为1,长度不定,shape为[n]
  • 矩阵Matrix:n行m列实数的有序集合,如[[1,23],[2,32],[5,23]]的矩阵,维度数为2,每个维度上长度不定,shape为[n,m]
  • 张量Tensor:所有维度数dim >2的数据统称为张量。张量的每个维度也作为轴Axis,一般维度代表了具体的业务含义,例如shape的张量[2,32,32,3]的张量共有4维,如果表图片数据,每个维度分别代表图片数量、图片高度、图片宽度、图片通道数,其中2代表了2张图片,32代表了高,宽均为32,3代表了RGB的3个通道。

在tensorflow中,一般将标量、向量、矩阵也都统称为张量,不作区分需要根据张量的维度数和形状自行判断。

  1. 创建一个标量,并查看数据类型
a=1.1 ##python的普通常量
type(a)
import tensorflow as tf
b=tf.constant(2.2) #tf的张量
type(b)

结果:(张量只能通过tf的函数去创建,不能使用python的普通语法创建)
在这里插入图片描述
2. 创建一个向量并展示向量信息

c=tf.constant([1,23,4,5,56])
c

结果:(id是tensorflow中内部索引的对象编号,shape表示张量的形状,dtype代表张量数职的精度值,张量numpy()方法可以返回Numpy.array类型的数据,方便到处数据到系统其他模块)
在这里插入图片描述

#将数据导出为numpy的array类型
c.numpy()

在这里插入图片描述
3. 与标量不同,向量的定义碧玺通过list传给tf.constant() 函数,例如创建一个和多个元素的向量:

##将一个元素的list转换为张量
d=tf.constant([1.2])

在这里插入图片描述

##多个元素的list转换为张量
e=tf.constant([1.2,13,14,151,15,15])

在这里插入图片描述
4. 创建矩阵张量原理同list

#创建矩阵张量
f=tf.constant([[1,2,3,4],[5,6,7,8]])
f

在这里插入图片描述

1.2 字符串类型

TF除了支持数值类型的张量之外,还支持字符串类型的数据,例如在表示图片数据时,可以先记录图片的路径字符串,再通过预处理函数根据路径读取图片张量。

  1. 创建字符串张量
a=tf.constant('hello,DEEP learning!')
a

在这里插入图片描述

  1. tf还提供了一些2字符串类型的工具函数,如小写化lower()、拼接join()、长度length()、切分split()等。
tf.strings.lower(a) #小写化字符串

在这里插入图片描述
但是在tf中最常用的还是数字类型的数据,因此字符类型的数据的函数不做过多赘述。

1.3 布尔类型的数据

为了方便表达比较运算操作的结果,tf还支持布尔类型的张量,布尔类型张量只需要传入python语言的布尔类型数据,转换成为内部布尔类型即可。

  1. 创建布尔类型的张量
a=tf.constant(True)
a

在这里插入图片描述
2. 创建布尔类型的向量

b=tf.constant([True,False])
b

在这里插入图片描述
3. tf的布尔类型和python的布尔类型并不等价,不能通用

a=tf.constant(True)
a is True

在这里插入图片描述

2. 数值精度

对于数值类型的张量,可以保存为不同字节长度的精度,如浮点数3.14即可以保存为16位(bit)长度,也可以保存为32位甚至64位的精度。位越长,精度越高,同时占用的空间也就越大,常用的精度类型有tf.int16、tf.int32、tf.int64、tf.int64、tf.float16、tf.float32、tf.float64等,其中tf.float64即为tf.double。

tf.constant(123456789,dtype=tf.int16)
tf.constant(123456789,dtype=tf.int32)

在这里插入图片描述
可以看到,保存精度过低,数据123456789发生了溢出,得到了错位的结果,一般使用tf.int32、tf.int64精度,对于浮点数,高精度的张量可以表示更精准的数据,例如:采用tf.float32精度2保存’pai’ 时,实际保存为的数据位3.1415927.

import numpy as np
np.pi
tf.constant(np.pi,dtype=tf.float32)

在这里插入图片描述
如果采用tf.float64精度保存,则能够获得更高的精度,实现如下:

tf.constant(np.pi,dtype=tf.float64)

在这里插入图片描述

3. 类型转换

系统的每个模块使用数据类型,数值类型可能各不相同,对于不符合要要求的张量的类型及精度,需要通过tf.cast函数进行转换,例如:

a=tf.constant(np.pi,dtype=tf.float16)
tf.cast(a,tf.double)

在这里插入图片描述
进行类型转换时,需要保证转换操作的合法性,例如将高精度的张量转换为低精度的张量时,可能发生数据溢出隐患:

a=tf.constant(123456789,dtype=tf.int32)
tf.cast(a,tf.int16)

在这里插入图片描述
布尔类型与整型之间互信转型是合法的,是比较常见的操作:

a=tf.constant([True,False])
tf.cast(a,tf.int32)

在这里插入图片描述
一般末日0表示false,1表示True,在tf中,将非0数字,都视为True,例如:

a=tf.constant([-1,0,1,2])
tf.cast(a,tf.bool)

在这里插入图片描述

3.1 待优化的张量

为了区分需要计算梯度信息的张量与不需要计算梯度信息的张量,TF增加了一种专门的数据类型来支持梯度信息的记录:tf.Variable。tf.Variable类型在普通的张量类型的基础上增加了name、trainable等属性来支持计算图的构建。由于梯度运算会消耗大量的计算资源,而且会自动更新相关参数,对于不需要优化的张量,如何神经网络的输入X,不需要通过tf.Variable封装;相反,对于需要计算梯度优化的张量,如神经网络层的W和b,需要通过tf.Variable包裹以便TF跟踪梯度信息。
例如tf.Variable() 函数可以将普通张量转换为待优化的张量:

d=tf.constant([-1,0,1,2])#创建tf张量
b=tf.Variable(d)#转换为variable类型

在这里插入图片描述
其中name和trainable是variable特有的属性,name属性用于命名计算图中的变量,这趟命名体系是TF内部维护的,一般不需要用户关注name属性,trainable属性表示当前张量是否被优化,创建variable对象时是默认启用优化标志,可以设置trainable=false来设置张量不需要优化。
除了通过普通的方式创建variable,就可以之间创建,例如:

a=tf.Variable([1,2],[3,4])#直接创建variable张量
a

在这里插入图片描述

4 创建张量

创建tf中,可以通过多种方式创建张量,如从python列表对象创建,从numpy数组创建,或者创建采样自某种已知分布的张量等。

4.1 从数组、列表对象创建

Numpy array 数据和python list 列表是python程序中间非常重要的数据载体,很多数据通过python语言将数据加载至array 或者 list,再转化为Tensor类型,通过TF运算处理后导入到array或者list。方便其他模块调用。
通过tf.convert_to_tensor函数可以创建新Tensor,并保存在python list 对象或者numpy array 对象中的数据导入到Tensor:

tf.convert_to_tensor([1,2.])

在这里插入图片描述

import numpy as np
tf.convert_to_tensor(np.array([[1,2],[3,4]]))

在这里插入图片描述
注意,numpy 浮点数数组默认使用64位精度保存数组,转换到tensor类型时精度位tf.float64,可以在需要时将其转换为tf.float32类型。
实际上,tf.constant() 和tf.convert_to_tensor() 都能够自动地把numpy 数组或者python列表数据类型转化为Tensor类型。

4.2 创建全0或者1张量

将张量创建为全0或者全1数据是非常常见的张量初始化手段。考虑线性变换y=wx+b,将权值权值矩阵w初始化为全1矩阵,偏置b初始化为全0的向量,此时线性变化层输出y=x,因此是一种比较好的层初始化状态,通过tf.zero() 和 tf.ones() 即可创建任意形状,且内容全0或者全1的张量。创建全0和1的标量:

tf.zeros([]) #创建全0的标量
tf.ones([]) #创建全1的标量

在这里插入图片描述
创建全0和全1的向量:

tf.zeros([1]) #创建全0的向量
tf.ones([1]) #创建全1的向量

在这里插入图片描述
通过tf.zeros_like,tf.ones_like 可以方便地新建与某个张量shape 一致,且内容为全0或全1的张量。例如创建一张张量A形状一样的全0张量:

a=tf.ones([2,3])
tf.zeros_like(a)

在这里插入图片描述

a=tf.zeros([3,2])
tf.ones_like(a)

在这里插入图片描述
tf. *_like 是一系列的便捷函数,可以通过tf.zero(a.shape)等方式实现。

4.3 创建自定义数值张量

除了初始化为全0,或者全1的张量之外,有时也需要全部初始化为某个自定义数值的张量,例如将张量的数值全量初始化为-1等。
通过tf.fill(shape,value),可以创建全自定义数值value的张量,形状有shape参数制定。例如:

  • 创建所有元素为-1的标量:
tf.fill([],-1) #创建-1的标量

在这里插入图片描述

  • 创建所有元素为-1的向量
tf.fill([1],-1)#创建-1的向量

在这里插入图片描述

  • 创建所有元素为99的向量
tf.fill([2,2],99)#创建2行2列,元素全为99的矩阵

在这里插入图片描述

5. 创建已知分布的张量(正态和均匀分布)

正态分布和均匀分布是常见的分布之一,通过tf.random.normal(shape,mean=0.0,stddev=1.0) 可以创建形状为shape,均值mean,标准差为stddev的正态分布N(mean,stddev^3)。例如,创建均值为0,标准差1的正态分布:

tf.random.normal([2,2])

在这里插入图片描述
创建均值为1,标准差为2的正态分布

tf.random.normal([2,2],mean=1,stddev=2)

在这里插入图片描述
通过tf.random.uniform(shape,minval=0,maxval=none,dtype=tf.float32)可以创建采样自[minval,maxval]区间的均匀分布的张量。例如:

tf.random.uniform([2,2])#创建采样自区间[0,1],shape=[2,2]的矩阵:

在这里插入图片描述
创建采样区间在[0.10],shape为[2,2]的矩阵:

tf.random.uniform([2,2])

在这里插入图片描述
如果需要均匀采样整型类型的数据,就必须指定采样区间最大值maxval参数,同时指定数据类型为tf.int*类型:

tf.random.uniform([2,2],maxval=100,dtype=tf.int32)#创建采样自[0.100]均匀缝补的整形矩阵

在这里插入图片描述

6 创建序列

如果需要快速创建序列,可以使用range( x,delta=1)函数,创建[0,x),步长为delta的整型序列

tf.range(10)#创建步长为1,0-10的数据序列

在这里插入图片描述

tf.range(10,delta=2)#创建步长为2,0-10的数据序列

在这里插入图片描述
创建[2,10),步长为2的序列:

tf.range(2,10,delta=2)

在这里插入图片描述

参考资料

  • TensorFlow深度学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/337494.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux重定向:深入理解与实践

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:晴る—ヨルシカ 0:20━━━━━━️💟──────── 4:30 🔄 ◀️ ⏸ ▶️ ☰ &…

深度学习记录--Momentum gradient descent

Momentum gradient descent 正常的梯度下降无法使用更大的学习率,因为学习率过大可能导致偏离函数范围,这种上下波动导致学习率无法得到提高,速度因此减慢(下图蓝色曲线) 为了减小波动,同时加快速率,可以使用momentum…

linux内核原理--分页,页表,内核线性地址空间,伙伴系统,内核不连续页框分配,内核态小块内存分配器

1.分页,页表 linux启动阶段,最初运行于实模式,此阶段利用段寄存器,段内偏移,计算得到物理地址直接访问物理内存。 内核启动后期会切换到保护模式,此阶段会开启分页机制。一旦开启分页机制后,内…

Navicat平替工具,一款免费开源的通用数据库工具

前言 前段时间有小伙伴在群里提问说:因为公司不允许使用破解版的Navicat,有好用的Navicat平替工具推荐吗?今天分享一款免费开源的通用数据库工具:DBeaver。 DBeaver工具介绍 DBeaver是一款免费的跨平台数据库工具,适…

转转交易猫自带客服多模板全开源完整定制版源码

商品发布; 请在后台商品添加成功后, 再点击该商品管理,可重新编辑当前商品的所有信息及配图以及支付等等相关信息 可点击分享或者跳转,将链接地址进行发布分享 请在手机端打开访问 访问商品主要模板文件路径目录 咸鱼&#…

四个简单的bat脚本

Windows11 最大劝退点就是这个右键菜单,复制粘贴都变成一点点的小图标,最气人的是点击底部的显示更多选项才能展示全部功能。让许多本来点一次就能完成的操作变成两次。其实使用一个小命令就能修改回win10版本的菜单。四个简单的bat脚本,能完…

Java大型企业进销存系统

技术框架: SpringBoot Spring Data Jpa SpringMvc Shiro安全认证 完整权限系统 easyui 有需要的可以联系我。 运行环境: jdk8 IntelliJ IDEA maven 系统介绍: 导航菜单:系统菜单、销售管理、库存管理、统计报表、基础…

Ubuntu使用docker-compose安装redis

ubuntu环境搭建专栏🔗点击跳转 Ubuntu系统环境搭建(十三)——使用docker-compose安装redis 文章目录 Ubuntu系统环境搭建(十三)——使用docker-compose安装redis1.搭建文件夹2.docker-compose.yaml配置文件3.redis.co…

【JavaWeb】XML Tomcat10 HTTP

文章目录 一、XML1.1常见配置文件类型 二、Tomcat102.1 WEB项目的标准结构2.2 Tomcat目录2.3 WEB项目部署的方式2.4 IDEA中开发并部署运行WEB项目2.5 处理配置文件2.6 处理依赖jar包问题2.7 IDEA部署-运行web项目 三、HTTP3.1 HTTP协议的会话方式3.2 请求和响应报文3.3.1 报文的…

数字IC后端设计实现 | PR工具中到底应该如何控制density和congestion?(ICC2Innovus)

吾爱IC社区星友提问:请教星主和各位大佬,对于一个模块如果不加干预工具会让inst挤成一团,后面eco修时序就没有空间了。如果全都加instPadding会导致面积不够overlap,大家一般怎么处理这种问题? 在数字IC后端设计实现中…

前端实现贪吃蛇功能

大家都玩过贪吃蛇小游戏,控制一条蛇去吃食物,然后蛇在吃到食物后会变大。本篇博客将会实现贪吃蛇小游戏的功能。 1.实现效果 2.整体布局 /*** 游戏区域样式*/ const gameBoardStyle {gridTemplateColumns: repeat(${width}, 1fr),gridTemplateRows: re…

RabbitMQ与SpringAMQP

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。(经纪人!) 1.RabbitMQ介绍 微服务间通讯有同步和异步两种方式 同步(通信&#xff0…

实现SERVLET应用程序

实现SERVLET应用程序 Smart Software 的开发人员希望开发一个Web应用程序,使用servlet显示保存在表中的雇员信息。该应用程序需要有用户界面,用户可在该用户界面中指定要查看雇员数据的雇员ID。该界面还应显示网站被访问的次数。 解决方案 要解决上述问题,需要执行以下任务…

PWM之舵机

舵机又称直流电机,如下图 本节承接上节,具体的PWM技术已经在上一节讲的很详细了,本节就不再讲了,那么我们的重点就放在直流电机的工作原理上了。 一、工作原理 我们研究直流电机,主要式研究直流电机旋转速度的调节&a…

2024年最热门的网络安全自学学习方法,一网打尽!

学好网络安全是一个复杂而又迫切的需求,特别是在当今数字化时代。对于零基础的人来说,建议按照以下步骤和原则学习网络安全,以建立坚实的基础。 第一步:了解网络安全的基础概念 在学习网络安全之前,首先需要了解一些…

keep-alive组件缓存

keep-alive组件缓存 从a跳b,a已经销毁,b重新渲染;b跳a,b销毁a重新渲染 源组件销毁,目标组件渲染 组件缓存:组件实例等相关( 包括vnode)存储起来 重新渲染指的是:把视图重…

街机模拟游戏逆向工程(HACKROM)教程:[14]68K汇编-标志寄存器

在M68K中,有许多条件分支指令,和jmp指令一样也会修改PC达到程序跳转或分支的目的,不过这些会根据一些情况或状态来选择是否跳转。而在M68K中,有一个特别的寄存器来标记这些情况。 CCR(状态标志寄存器) CCR寄存器是用来保存一些对…

回调地狱与解决方案

什么是回调地狱? 简单理解就是回调函数嵌套回调 示例: setTimeout(() > {console.log(1);setTimeout(() > {console.log(2);setTimeout(() > {console.log(3);}, 1000);}, 2000)}, 3000)如上代码所示,回调函数嵌套回调,就…

Rustdesk自建服务搭建好了,打开Win10 下客户端下面状态一直正在接入网络,无法成功连接服务器

环境: Rustdesk1.2.3 自建服务器 有域名地址 问题描述: Rustdesk自建服务搭建好了,打开Win10 下客户端下面状态一直正在接入网络,无法成功连接服务器 解决方案: RustDesk是一款免费的远程桌面软件,它允许用户通过互联网远程连接和控制其他计算机。它是用Rust编程语…

专题篇|国芯科技系列化布局车载DSP芯片,满足不同层次车载音频产品的需求

随着高端DSP芯片产品CCD5001的亮相,国芯科技也在积极布局未来的DSP系列芯片群。通过深入研究不同车型音频处理需求,对比国外DSP产品综合性能和成本,国芯科技未来将推出全新DSP芯片家族,包括已经推出的高端产品CCD5001,…
最新文章