【深蓝学院】移动机器人运动规划--第2章 基于搜索的路径规划--笔记

0. Outline

在这里插入图片描述

1. Graph Search Basis

Configuration Space等概念
在这里插入图片描述
机器人配置: 指机器人位置和所有点的表示。
DOF: 指用于表示机器人配置所需的最小的实数坐标的数量n。
C-space: 包含机器人n维所有配置的空间。
在C-space中机器人的pose是一个点。

在这里插入图片描述

在这里插入图片描述

  • 机器人在C-space中被表示为一个点,pose包含为R,t
  • 空间中的障碍物也需要映射到C-space中,并且根据机器人的尺寸做膨胀(该过程是one-time work,可一次完成,因为如果点碰不到膨胀边缘,就不会碰到障碍物),叫做C-obstacle
  • S-space=(C-obstacle) U (C-free)
  • path是在C-free中从起点start到终点goal

eg:如果将机器人建模为一个半径为 δ r \delta_r δr的球,那么将obstacle向外膨胀 δ r \delta_r δr,即可对一个点进行palnning
在这里插入图片描述

2. Graph and Search Method

无向图,有向图,加权图(权值根据具体问题定义,可能是长度,可能是消耗的能量,可能是风险等等)

在这里插入图片描述
基于搜索的图有栅格,本身就包含关系,而基于采样的图则没有这种关系。
在这里插入图片描述
搜索的过程即构建搜索树的过程,但该过程往往代价较大,我们的目标是设计尽可能快且不失最优性的路径搜索算法。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

DFS容器是栈,BFS容器是队列。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

图示中DFS先顺时针,后逆时针,访问最大的,出栈,入栈。

在这里插入图片描述
图始终BFS始终逆时针,从小到大依次访问,出队,入队,不断地一层一层地推进frontier。

在这里插入图片描述
BFS回溯可以找到最短路径,而DFS不可以,所以常用DFS。(先有一个直观的印象)

贪心算法:
在这里插入图片描述
贪心算法依靠某种规则来挑选最优的节点,叫做启发。启发即对于最近节点的一个猜测,比如图中红色到紫色的距离有两种猜测:欧式距离和曼哈顿距离。

  • 无障碍物时贪心算法与BFS对比:
    在这里插入图片描述
    贪心算法又快又准。

  • 有障碍物时对比
    在这里插入图片描述
    贪心算法虽然快,但是陷入局部最优,而BFS虽然慢,但是路径确实全局最优。

虽然贪心算法有时不是最优,但仍然有很多我们可以借鉴的性质。

在这里插入图片描述
实际中需要考虑每小段路径的cost,即C,当每个C=1时,BFS最优,但通常情况C不为1,于是引入了Dijkstra和A*。

3. Dijkstra

算法流程可以看浙大的这节视频

在这里插入图片描述
dist最小可以使用priority_queue来实现,按照键值来排序,弹出键值最小的。

在这里插入图片描述
在这里插入图片描述
这里的priority queue就是open list,已经扩展过的(已经收录的node)放在close list中(实际上不是方node本身,只需使用容器管理这些node的下标)。

在这里插入图片描述

在这里插入图片描述

Pros:Dijkstra算法是完备且最优的:完备即一定能找到解;最优即解一定是最优的。
Cons:由于没有goal的任何信息,所以是盲目地,均匀地向各个方向扩散的。

在这里插入图片描述
结合贪心算法和info和Dijkstra的单源带权搜索,将二者的优点结合,引出了A*,相较于Dijkstra,在g值的计算方面添加了对goal的估计h,类似于DL中为loss添加正则项。

4. A*

4.1 算法介绍

在这里插入图片描述
A*与Dijkstra的唯一不同就是g值的计算,由单纯的 g ( n ) g(n) g(n)变为 f ( n ) = g ( n ) + h ( n ) f(n)=g(n)+h(n) f(n)=g(n)+h(n),其中所有节点的 h ( n ) h(n) h(n)是在初始化阶段one-time计算好的(如所有节点到goal的欧氏距离)。

在这里插入图片描述

4.2 A*最优性讨论

在这里插入图片描述
上例说明A* 不一定是最优的,

f A = 7 , f G = 5 f_A=7,f_G=5 fA=7,fG=5,A*找到的路径为S->G

而实际cost, g S G = 5 , g S A G = 4 g_{SG}=5,g_{SAG}=4 gSG=5,gSAG=4,显然SAG最优。

A*满足最优的条件:当所有节点的guess的h ≤ \leq 真实g

用实际数据来验证:

  1. h s = 6 , h A = 5 h_s=6,h_A=5 hs=6hA=5,则
    S : f = g + h = 0 + 6 = 6 S: f=g+h=0+6=6 S:f=g+h=0+6=6
    A : f = g + h = 1 + 5 = 6 A: f=g+h=1+5=6 A:f=g+h=1+5=6
    G : f = g + h = 5 + 0 = 5 G: f=g+h=5+0=5 G:f=g+h=5+0=5
    输出S->G,非最优。

  2. h s = 5 , h A = 4 h_s=5,h_A=4 hs=5hA=4,则
    S : f = g + h = 0 + 5 = 5 S: f=g+h=0+5=5 S:f=g+h=0+5=5
    A : f = g + h = 1 + 4 = 5 A: f=g+h=1+4=5 A:f=g+h=1+4=5
    G : f = g + h = 5 + 0 = 5 G: f=g+h=5+0=5 G:f=g+h=5+0=5
    输出方式涉及到路径对称性问题,在5.3节tie breaker中会详细讨论。

  3. h s = 5 , h A = 3 h_s=5,h_A=3 hs=5hA=3,均满足小于等于actual g g g,则
    S : f = g + h = 0 + 5 = 5 S: f=g+h=0+5=5 S:f=g+h=0+5=5
    A : f = g + h = 1 + 3 = 4 A: f=g+h=1+3=4 A:f=g+h=1+3=4
    G : f = g + h = 5 + 0 = 5 G: f=g+h=5+0=5 G:f=g+h=5+0=5
    pop A;
    pop G;
    输出S->A->G,最优。

于是重点就转移到了如何设计heuristic guess函数h

在这里插入图片描述

启发式函数需要满足 h ( n ) ≤ h ∗ ( n ) h(n)\leq h^*(n) h(n)h(n)
我们称这种启发式函数为admissible(可接受的、可容许的)的。

在这里插入图片描述
admissible heuristic function的本质为向量的范数,以下为一些admissible heuristic function的列举:

  • 欧式距离(向量2范数): ∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n ∣ x i ∣ 2 ||x||_2=\sqrt{\sum\limits_{i=1}^{n} |x_i|^2} ∣∣x2=i=1nxi2 ,always admissible
  • 曼哈顿距离(向量1范数): ∣ ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ |||x||_1=\sum\limits_{i=1}^{n} |x_i| ∣∣∣x1=i=1nxi,Depends admissible
  • 向量的无穷范数: ∣ ∣ x ∣ ∣ ∞ = m a x i ( x i ) ||x||_{\infty}=\mathop{max}\limits_{i} (x_i) ∣∣x=imax(xi),always admissible
  • Octile distance: 基于8个方向的直线移动和对角线移动的最短路径进行计算。具体而言,Octile距离考虑了水平、垂直和对角线方向的移动。在直角移动(水平或垂直)时,距离为1;在对角线移动时,距离为根号2(即1.414)。这样设计是为了模拟在规定的移动方向上的最短路径。在路径规划算法(如A*算法)中,Octile距离经常用于启发式估计,以帮助算法找到最优路径。

在这里插入图片描述
上例说明A*有了贪心算法的对于目标的引导性。

4.3 A*的改进

f f f中引入 h h h的结果可知,h的引入也引入了贪心算法的特性:强目的性,faster。如果对h赋予权值则可以改变该引入特性的比重,于是出现了weighted A*,给h增减权重 ϵ ( ϵ > = 0 ) \epsilon(\epsilon>=0) ϵ(ϵ>=0),即 f = g + ϵ h f=g+\epsilon h f=g+ϵh

  • ϵ > 1 \epsilon>1 ϵ>1时,贪心占比大,算法强suboptimal,faster; ϵ = + ∞ \epsilon=+\infty ϵ=+时,忽略 g g g,算法退化为贪心算法
  • ϵ = 1 \epsilon=1 ϵ=1时,为正常A*,solution suboptimal
  • 0 < ϵ < 1 0<\epsilon<1 0<ϵ<1时,Dijkstra占比大,更接近optimal,slower;极端情况 ϵ = 0 \epsilon=0 ϵ=0退化为Dijkstra算法,solution optimal

weighted A*改进的点:

  1. ϵ > 1 \epsilon>1 ϵ>1实际上是使用solution的optimality来换取speed,速度提升是A*的数量级等级(几十倍等级别)
  2. 学界已证明weighted A*的 ϵ \epsilon ϵ-suboptimal,即 c o s t ( s o l u t i o n ) ≤ ϵ ∗ c o s t ( o p t i m a l   c o s t ) cost(solution)\leq\epsilon*cost(optimal \ cost) cost(solution)ϵcost(optimal cost)

在这里插入图片描述
还有weight A的改进Anytime A,ARA*,D*等研究,本课程不做介绍,可自行拓展。

更改权值的对比:

在这里插入图片描述
该网页可以调参进行对比: http://qiao.github.io/PathFinding.js/visual/

以下是我的实验结果:

AlgorithmLengthTime(ms)Operations
Best-First-Search(a=0,b=1)29.561200340
weightedA*(a=1,b=5)27.0717000370
weighted A*(a=1,b=1)26.2413000495
Dijkstra(a=1,b=0)26.24420002670

可以看出贪心算法operation最少,耗时最短,但solution为suboptimal(path较长),Weight A*(a=1,b=1)和Dijkstra的solution为optimal,但Weight A*(a=1,b=1)明显耗时更少,此实验中耗时提升了2.23倍,大规模问题上提升应该会更大。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5. Engineering considerations

工程实现对于算法性能影响可能有10倍,100倍都不止。

5.1 地图表示

以Occupancy grid map为例:
在这里插入图片描述
2Dgrid-map的表示,8连通( 2 3 − 1 2^3-1 231),3D为26连通( 3 3 − 1 3^3-1 331)

数据结构在搜索过程中其实就是在找到该节点的相邻节点时需要用到。

在这里插入图片描述
推荐使用stl中的priority_queuemultimap,对vector排序可以使用make_heap方法。(VINS-MONO中用unordered_map较多)。

5.2 the best heuristic

前面降到可以使用Euclidean distance作为heuristic,尽管Euclidean distance满足 h ( n ) ≤ h ∗ ( n ) h(n)\leq h^*(n) h(n)h(n)即可找到optimal solution,但是在搜索过程中会扩展很多不必要的节点, h ( n ) ≤ h ∗ ( n ) h(n)\leq h^*(n) h(n)h(n)小于的非常多,即Euclidean distance不够tight
在这里插入图片描述
对于结构化的地图和结构化的移动rule,在2D情况下可以推导出任何一个节点到终点的heuristic的estimate,可直接用作我们的heuristic,我们称之为Diagonal Heuristic(对角Heuristic)

在这里插入图片描述

TODO:这个2D Heuristic estimate结果怎么推出来的?

上例中DIagonal Heuristic和L2 Heuristic的solution path的cost(即f)相同,即出现了路径对称性问题,因为在计算f时他们之间没有difference,于是引入了Tie breaker。

5.3 Tie breaker

直观理解是打破等号。

Tie breaker用于打破5.2上述的对称性问题,核心思想是 在cost相同的path中找到preference

目的是减少不必要的node的拓展,提高搜索效率。
在这里插入图片描述

在这里插入图片描述

  • 方法1:在计算Heuristic时加入一个系数 p = 一步的最小 c o s t 可能的 p a t h 的最大 c o s t ( 比如矩形地图的斜对角线 c o s t ) p=\frac{一步的最小cost}{可能的path的最大cost(比如矩形地图的斜对角线cost)} p=可能的path的最大cost(比如矩形地图的斜对角线cost)一步的最小cost这里还不是很理解为什么加入一个 p p p就能使f不同,需要结合代码具体理解。
    这样会轻微打破admissible条件,因为h有小幅的增大,admissible heuristic取等号时是在没有任何障碍物情况下,而实际工程中由于存在较多obstacle,计算出来的h通常不会达到tight heuristic。

  • 方法2:定义rule:当f相同时,取h更小的。

  • 方法3:在f或者g上加一个deterministic random numbers(提前确定好的随机数,确定之后不能变,使用hash映射),工程实现可能较复杂,但效果会比前面的好。

  • 方法4:倾向于走直线,同样是slightly change heuristic,给heuristic加上一个corss,让其更倾向走符合直观感受的对角线path。

还有很多其他方法,可以看论文。

但是Tie breaker也会带来一些负面影响,我们最终给到robotic的是一条可执行的轨迹trajectory,trajectory是由我们的规划出的path来生成的,会涉及到traj光滑的处理,如下图,当我们使用Tie breaker在有obsacle的情况下生成了一条path,理想的trajectory是如图所示的红色光滑曲线,使用tie breaker生成了虚线所示的path,在trajectory generation过程中就比较难得到红色光滑traj,反而是矩形的path更易得到光滑traj,所以使用什么tie breaker是有讲究的,针对这种情况,引入了本章的第3块内容:JPS。
在这里插入图片描述

6. JPS(Jump Point Search)

JPS是一种系统性的打破路径平衡性的图搜索方法,其core idea是找到对称性并打破它
在这里插入图片描述

6.1 look ahead rule(pruning rule)

在这里插入图片描述

Look ahead rule,以例子来介绍这样一个规则:

  1. 对于无障碍物,straight到达儿子节点的情况:

从某点(4)到达另一点(1),不需要经过儿子节点(x)时的path cost为 f A f_A fA,经过儿子节点的path cost为 f B f_B fB,则
- 当 f B < f A f_{B}<f_{A} fB<fA时,才考虑从儿子节点到达该节点,称该点为natural neighbors;
- 当 f B ≥ f A f_{B}\geq f_{A} fBfA,不考虑从x到达该节点(即neighbor pruning,discard),称该节点为inferior neighbors(劣性节点)。

按照上述定义, ( f B = f 4 → x → 1 = 1 + 2 ) > ( f A = f 4 → 1 = 1 ) (f_{B}=f_{4\to x \to 1}=1+\sqrt{2}) > (f_A = f_{4\to1}=1) (fB=f4x1=1+2 )>(fA=f41=1)
所以扩展儿子节点 x x x时不考虑节点1;

从4走到3是否需要经过x:
( f B = f 4 → x → 3 = 1 + 2 ) = ( f A = f 4 → 2 → 3 = 2 + 1 ) (f_{B}=f_{4\to x \to 3}=1+\sqrt{2}) = (f_A = f_{4\to2\to3}=\sqrt{2}+1) (fB=f4x3=1+2 )=(fA=f423=2 +1)相等,所以不考虑节点3;

同理1,2,3,6,7,8均不需要考虑,只需要考虑5。

  1. 对于无障碍物,diagonal对角线到达儿子节点的情况,rule稍微有些改动:
  • f B < = f A f_{B}<=f_{A} fB<=fA时,consider
  • f B > f A f_{B}>f_{A} fB>fA时,discard

eg1:到达1
( f A = f 6 → 4 → 1 = 2 ) < ( f B = f 6 → x → 1 = 2 2 ) (f_A=f_{6\to4\to1}=2)<(f_B=f_{6\to x \to 1}=2\sqrt{2}) (fA=f641=2)<(fB=f6x1=22 )故discard 1

eg2:到达2
( f A = f 6 → 4 → 2 = 2 + 1 ) = ( f B = f 6 → x → 2 = 2 + 1 ) (f_A=f_{6\to4\to2}=\sqrt{2}+1)=(f_B=f_{6\to x \to 2}=\sqrt{2}+1) (fA=f642=2 +1)=(fB=f6x2=2 +1)
相等,diagonal相等时需要consider,详细参考论文

http://users.cecs.anu.edu.au/~dharabor/data/papers/harabor-grastien-aaai11.pdf Equation 1/2

  1. 有障碍物,straight时,3号节点必须被考虑,称为forced neighbors
  2. 有障碍物,diagonal时,1号节点必须被考虑。

以上有/无障碍物的straight和diagonal情况可以涵盖所有情况,向上下左右,向左上,左下,右上,右下均类似。

6.2 Jumping rule

在这里插入图片描述

为方便说明,将look ahead rule标记为①~④,jumping的原则是先递归straight jump再递归diagonal jump,发现force neighbor则会递归直线recall最上面一个node(不允许折线recall)


例子1:
p ( x ) p(x) p(x)出发进行JPS扩展:

  1. 起始点使用④,绿框部分需要被consider,w为force beighbor
    在这里插入图片描述
  2. 在x处向上,向右运用①最终都碰到障碍物(边界也算障碍物),jump失败
  3. 直到递归diagonal jump到y时,对y向右递归straight jump到z触发了③,绿框+蓝框是consider,蓝框为force neighbor,故z为特殊节点,jump成功,递归返回到最上层发现z的节点,即y,将y加入到open list
    在这里插入图片描述
  4. 递归返回到x,结合第1步的图,x节点的上、右递归straight jump,以及右上递归diagonal结束,该右下的force neighbor的递归diagonal jump,w天然是x的force neighbor,所以将w加入到open list中。

至此,完成了对x节点的所有JPS扩展,将x节点加入到close list中。


例子2:
在这里插入图片描述
水平,竖直jump,无事发生,对角线跳一步

在这里插入图片描述

在这里插入图片描述

向右jump时发现了特殊,于是直线recall(不允许折线recall),将蓝框的点加入到open list,绿色的起点即可加入close list,退出历史舞台。


例子3:
在这里插入图片描述
注意,当在扩展时发现了goal,视为发现了force neighbor,要recall并加入node到open list

最终path
在这里插入图片描述


例子4:
在这里插入图片描述

6.3 Extension

3D JPS,本质上和2D JPS相同,只是3D rules更复杂一些:Sikang之前在深蓝讲过公开课,可以看看。
在这里插入图片描述

大多数情况下JPS比A* 更优,因为JPS能够在复杂环境中迅速找到一个个jump point,省去了中间不必要的加入openlist的搜索过程。
在这里插入图片描述

但是在机器人的FOV内看不到障碍物后的点,当存在大量空旷场景时,JPS为了搜索jump point,会不断地collision query,虽然对于open list的操作变少了,但是大量的collision query耗时会增加,可能不一定比A*更优。
在这里插入图片描述

我的实验结果:
在这里插入图片描述
在这里插入图片描述
这种情况下明显A* 更优。

6.4 JPS summary

在这里插入图片描述
JPS小结:

  1. look ahead rule:遵照①~④进行拓展,举一反三
  2. jumping rule:
    1. 先水平、竖直straight扩展,再diagonal扩展,
    2. 遇obstacle或map border都视为该方向上扩展失败,直至发现满足look ahead rule中的force neighbor,
    3. 直线recall到jump的起始节点(不允许折线recall),加入到open list中
    4. 当所有方向都扩展完毕之后,将source node加入close list中。
    5. 当在扩展时发现了goal,视为发现了force neighbor,要recall并加入node到open list
  3. A* 与JPS的唯一区别在于如何选取neighbors,前者选取几何neighbors,后者根据上述2条rules选取neighbors,故用在A*上的trick均可用于JPS(diagonal heuristic,Tie breaker等)
  4. JPS 和A* 都依赖的一个点是force point一定是最优路径需要经过的点,即jump point,将起点到终点过程中的所有jump points连接起来就得到了最优path,只不过JPS通过他的规则过滤掉了很多不需要拓展的点,而A* 是所有几何neighbors都拓展。(JPS的jump point和外层循环所维护的最小cost是不一样的,前者是JPS’s rules,后者是JPS和A* 的算法框架)。
  5. 在复杂环境中JPS通常博A* 更优,但远不是always更优
  6. JPS降低了对于open list的操作(修改键值,排序等),但增加了status query的次数
  7. JPS的局限性:仅仅在uniform grid map中才能使用(1,1, 2 \sqrt2 2 这类几何特征的grid map),对于更general的图搜索问题(如带权值的非grid map),A* 可以用,而JPS无法使用。

7. 论文推荐

  1. http://users.cecs.anu.edu.au/~dharabor/data/papers/harabor-grastien-aaai11.pdf
  2. Planning Dynamically Feasible Trajectories for Quadrotors using Safe Flight Corridors in 3-D Complex Environments, Sikang Liu, RAL 2017

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/342395.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[MySQL]关于表的增删改查

目录 1.插入 1.1单行数据全列插入 1.2多行插入&#xff0c;指定列插入 ​编辑2.查询 2.1全列查询 2.2指定列查询 3.3查询字段为表达式 2.4别名 ​编辑2.5去重 2.6排序 2.7条件查询 2.7.1基本查询: 2.7.2 AND 和OR 2.7.3范围查询 2.7.4模糊查询 2.7.5分页查询 limit …

谈谈对测试技术的一些看法~

最近没前面那样一天更几篇文章了&#xff0c;挺丧的&#xff0c; 可能是之前弦绷的有点紧&#xff0c;现在有点受不了了。 所以突然就泄了气&#xff0c;每天忙完工作的事后就躺在家里打游戏。其实感觉每年都有一段时间是这样丧的。所以我自己其实并不是特别努力的类型&#xf…

STM32入门教程-2023版【4-2】OLED显示屏简介

关注 点赞 不错过精彩内容 大家好&#xff0c;我是硬核王同学&#xff0c;最近在做免费的嵌入式知识分享&#xff0c;帮助对嵌入式感兴趣的同学学习嵌入式、做项目、找工作! 本小结学习一下如何使用OLED显示屏的函数驱动模块 一、OLED显示屏简介 &#xff08;1&#xff09;…

汽车网络架构与常用总线汇总

汽车CAN总线简述 CAN 是控制器局域网Controller Area Network 的缩写&#xff0c;1986年&#xff0c;由德国Bosch公司为汽车开发的网络技术&#xff0c;主要用于汽车的监测与控制&#xff0c;目的为适应汽车“减少线束的数量”“通过多个网络进行大量数据的高速传输”的需求。…

栈--顺序栈的基本操作(对小白友好)

文章目录 栈的基本操作栈的定义栈的初始化栈的判空进栈出栈读取栈顶元素销毁栈全部源码 栈的基本操作 以下代码中,默认初始化的top为-1。 栈的定义 #define MaxSize 50 //定义栈中元素最大个数typedef struct {int data[MaxSize]; //存放栈中元素int top; //栈顶指针…

Linux基本常用命令大全(二)

五、查找命令 5.1 grep grep命令是一种强大的文本搜索工具 使用实例&#xff1a; ps -ef | grep sshd 查找指定ssh服务进程 ps -ef | grep sshd | grep -v grep 查找指定服务进程&#xff0c;排除gerp身 ps -ef | grep sshd -c 查找指定进程个数 5.2 find find命令在目录…

IOS-生命周期-Swift

目录 App生命周期应用状态未运行——Not running未激活——Inactive激活——Active后台——Backgroud挂起——Suspended 关系图生命周期方法相关方法注意在其他地方监听 ViewController生命周期UIView生命周期 App生命周期 应用状态 App主要有五种状态&#xff0c;分别是&…

从CNN ,LSTM 到Transformer的综述

前情提要&#xff1a;文本大量参照了以下的博客&#xff0c;本文创作的初衷是为了分享博主自己的学习和理解。对于刚开始接触NLP的同学来说&#xff0c;可以结合唐宇迪老师的B站视频【【NLP精华版教程】强推&#xff01;不愧是的最完整的NLP教程和学习路线图从原理构成开始学&a…

【C++杂货铺】三分钟彻底搞懂函数重载

目录 &#x1f308;前言 &#x1f4c1; 缺省参数 &#x1f4c2;概念 &#x1f4c2;分类 &#x1f4c2; 注意事项 &#x1f4c1; 函数重载 &#x1f4c2;概念 &#x1f4c2;实现原理 &#x1f4c1; 总结 &#x1f308;前言 欢迎收看本期【C杂货铺】&#xff0c;这期内容…

[亲测有效]CentOS7下安装mysql5.7

前言 近期项目需要搭配mysql一起存储相关数据&#xff0c;但对mysql的版本有要求&#xff0c;于是在服务器搭建了mysql5.7&#xff0c;顺便记录一下搭建步骤和踩坑解决步骤。 目录 前言 一、清除旧安装包 二、安装YUM 三、使用yum命令即可完成安装 四、重新设置密码 五、…

gradle打包分离依赖jar

正常打包的jar是包含项目所依赖的jar包资源&#xff0c;而且大多数场景下的依赖资源是不会频繁的变更的&#xff0c;所以实际把项目自身jar和其所依赖的资源分离可以实现jar包瘦身&#xff0c;减小上传的jar包总大小&#xff0c;能实现加速部署的效果 一 原本结构 二 配置buil…

基于Python实现人脸识别相似度对比

目录 引言背景介绍目的和意义 人脸识别的原理人脸图像获取人脸检测与定位人脸特征提取相似度计算 基于Python的人脸相似度对比实现数据集准备人脸图像预处理特征提取相似度计算 引言 背景介绍 人脸识别技术是一种通过计算机对人脸图像进行分析和处理&#xff0c;从而实现自动识…

UML中的实现关系

在UML&#xff08;统一建模语言&#xff09;中&#xff0c;“实现”关系是指一个类&#xff08;实现类&#xff09;实现一个接口或抽象类的方法的情况。这种关系通常用于指定类如何实现某个特定的接口规范。 UML中的实现关系 在UML类图中&#xff0c;实现关系用一条带有空心箭…

学生公寓智能控电管理的功能和管理意义

石家庄光大远通电气有限公司学生公寓智能控电管理系统是由硬件和软件组成的系统&#xff0c;用于控制和管理学生公寓中的电力使用。 一、用户管理 智能控电管理系统具备用户管理功能&#xff0c;可以对学生的个人信息进行统一管理。系统会记录学生的姓名、学号、宿舍号等基本信…

MySQL InnoDB 底层数据存储

InnoDB 页记录Page Directory记录迁移 页 是内存与磁盘交互的基本单位&#xff0c;16kb。 比如&#xff0c;查询的时候&#xff0c;并不是只从磁盘读取某条记录&#xff0c;而是记录所在的页 记录 记录的物理插入是随机的&#xff0c;就是在磁盘上的位置是无序的。但是在页中…

Yuliverse:引领区块链游戏新篇章!

数据源&#xff1a;Yuliverse Dashboard 作者&#xff1a;lesleyfootprint.network 什么是 Yuliverse Yuliverse 是一款元宇宙游戏的先锋&#xff0c;是一款主打 Explore to earn 和 Social to earn 的链游。 这是一款能让你边玩边赚钱的免费区块链游戏&#xff0c;得到 LI…

前端开发如何在自己项目中引用iconfont图标

前端开发如何在自己项目中引用iconfont图标&#xff01;下面展示一下&#xff0c;详细的引入步骤。 第一步&#xff0c;您需要注册一个会员账号登录进入。创建一个项目。 可以使用其他的平台账号登录&#xff0c;我选了是微信登录&#xff0c;不过他们还会要求你输入手机号&am…

牛客网-----跳石头

题目描述&#xff1a; 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行&#xff0c;河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间&#xff0c;有N块岩石(不含起点和终点的岩石)。在比赛过程中&#xff0…

网络防御保护1

网络防御保护 第一章 网络安全概述 网络安全&#xff08;Cyber Security&#xff09;是指网络系统的硬件、软件及其系统中的数据受到保护&#xff0c;不因偶然的或者恶意的原因而遭受到破坏、更改、泄露&#xff0c;系统连续可靠正常地运行&#xff0c;网络服务不中断 随着数…

Oracle Linux 8.9 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演示环境下进行的&#xff0c;演示环境中没有任何有价值的数据&#xff0c;但这并不代表摆在你面前的环境也是如此。生产环境…
最新文章