分布式一致性算法---Raft初探

读Raft论文也有一段时间了,但是自己总是以目前并没有完全掌握为由拖着这篇博客。今天先以目前的理解程度(做了6.824的lab2A和lab2B)对这篇论文做一个初步总结,之后有了更深入的理解之后再进行迭代,关于本文有任何疑问欢迎评论交流。另外需要说明的是本篇博客并没有对Raft算法的背景和基础知识进行全面介绍,所以需要有一定的基础之后进行阅读。

基本概念

三种状态及相互转换关系

Raft算法中每个服务器处于这三种状态中的一个。

  • 领导者(Leader):负责处理客户端请求、发送心跳、进行日志同步。正常情况下每个时刻只能有一个领导者。
  • 跟随者(Follower):完全被动的处理请求,也就是处理来自领导者的日志同步请求(心跳包含在其中),以及来自候选者的投票请求,服务器大多数情况属于此状态。
  • 候选者(Candidate):在特殊情况下候选者通过选举可以成为领导者,它是一个中间状态。

以下是三种状态的转换关系图。
raft状态转换.png

日志形式

日志以下图的形式组织,Raft算法通过索引和任期号唯一的标识一条日志条目,并且只有被存储在超过一半节点的日志条目才能认为该日志为已提交(committed)。
image.png

算法总览

论文中的图2给出了Raft算法的整体框架图,下面给出图二的内容。整体分为四部分,第一部分是在代码实现时Raft这个结构体需要定义的属性,第二部分是进行日志同步日志时的RPC定义,第三部分是进行投票选举的RPC的定义,第四部分是每个Server的职责和三种角色的职责。
图片.png
Raft.png

领导者选举

实现流程(理论)

起初Server是Follower,在一段时间内没有收到心跳,或者投出自己的选票则会转换为Candidate。成为Candidate的流程是状态转变为Candidate,当前的任期加一,给自己投一票,然后通过RequestVote RPC向其他节点索要选票。接下来会发生下面三种情况中的一个:(1)如果在超时时间内收到多数选票,则转为Leader并立马发送心跳;(2)如果超时时间过去了没有收到多数选票,则重新开始上面的成为Candidate的流程;(3)如果在选举过程中收到已有领导者的消息则转为Follower。
情况(1):Candidate通过RequestVote rpc向其他节点发送索要选票请求时,会将当前任期,ID,最后一条日志的索引,最后一条日志的任期作为请求参数发送到每个Follower节点。Follower节点在收到请求后会首先进行任期对齐(如果Candidate的任期比我Follower小,则返回给他我的任期,并且不给他投票);然后当我还没给别人投票时,会比较Candidate的最后一条日志与我Follower的最后一条日志谁更新(up-to-date),如果你Candidate更新,那么好我给你我的选票,不然我Follower更新的话就不给你选票。这里谁更新(up-to-date)的规则在下面的 **2.3.1.比较日志新旧规则 **部分给出。
情况(2):这种情况出现的场景就是多个Follower同时成为Candidate,选票被分割,没人当选Leader,重启新的选举流程之后选票又被分割,选不出来Leader,好像进入了死循环,这个情况怎么解决呢?在 **2.3.2.分割选票 **部分给出。
情况(3):这种情况是当Candidate收到一个AppendEntries RPC请求时,并且发送这个请求的Leader的任期大于等于Candidate的任期,则认为当前时刻已有合法的Leader,并且Candidate你需要转换成为Follower。

实现流程(代码)

这里只给出核心的代码实现逻辑。需要定义一个选举计时器,如果当前是Follower或者Candidate并且达到超时时间了,则需要转变为Candidate并开始一轮选举。

func (rf *Raft) electionTicker() {
	for !rf.killed() {
		rf.mu.Lock()
        // rf.isElectionTimeoutLocked() 包含了随机超时时间逻辑
        // 关联细节2.3.2
		if rf.role != Leader && rf.isElectionTimeoutLocked() { 
			rf.becomeCandidateLocked() // 转变为Candidate
			go rf.startElection(rf.currentTerm) // 开始选举给每个节点发送索要投票请求
		}
		rf.mu.Unlock()
		ms := 50 + (rand.Int63() % 300)
		time.Sleep(time.Duration(ms) * time.Millisecond)
	}
}

转变为Candidate的实现如下:

func (rf *Raft) becomeCandidateLocked() {
	if rf.role == Leader {
		return
	}
	rf.currentTerm++  // 任期加一
	rf.role = Candidate  // 状态转变为Candidate
	rf.votedFor = rf.me  // 给自己投一票
    rf.resetElectionTimerLocked() // 重置超时计时器
}

开始选举给每个节点发送索要投票请求的实现:

func (rf *Raft) startElection(term int) {
    // 统计选票
    votes := 0
    rf.mu.Lock()
    l := len(rf.log)
    for peer := 0; peer < len(rf.peers); peer++ {
        if peer == rf.me {
            votes++
            continue
        }
        args := &RequestVoteArgs{
            Term:         rf.currentTerm,
            CandidateId:  rf.me,
            LastLogIndex: l - 1,   // 最后一条日志的索引
            LastLogTerm:  rf.log[l-1].Term,  // 最后一条日志的任期
        }
        go askVoteFromPeer(peer, args)  
    }
    rf.mu.Unlock()
    // 定义一个给其他节点发送索要选票并对回复信息进行处理的匿名函数
    askVoteFromPeer := func(peer int, args *RequestVoteArgs) {
        reply := &RequestVoteReply{}
        // 发送索要选票的请求
        ok := rf.sendRequestVote(peer, args, reply)
        rf.mu.Lock()
        defer rf.mu.Unlock()
        if !ok {
            return
        }
        // 如果发送到的节点的任期更大,则说明本Candidate没资格当Leader
        if reply.Term > rf.currentTerm {
            rf.becomeFollowerLocked(reply.Term)
            return
        }
        // 统计选票,获取过半数选票时转变为Leader并发送心跳
        if reply.VoteGranted {
            votes++
            if votes > len(rf.peers)/2 {
                rf.becomeLeaderLocked()
                go rf.replicationTicker(term)
            }
        }
    }

}

给一个节点发送索要投票请求的函数:

func (rf *Raft) sendRequestVote(server int, args *RequestVoteArgs, reply *RequestVoteReply) bool {
	ok := rf.peers[server].Call("Raft.RequestVote", args, reply)
	return ok
}

索要投票的RPC ,或者叫Follower对Candidate的请求的回调函数的定义:

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {
	rf.mu.Lock()
	defer rf.mu.Unlock()
	reply.Term = rf.currentTerm
	reply.VoteGranted = false
    // 如果你Candidate的任期比我小,那你该退下去了
	if args.Term < rf.currentTerm {
		return
	}
    // 如果你Candidate的任期比我大,那我如果是Candidate就得边Follower
	if args.Term > rf.currentTerm {
		rf.becomeFollowerLocked(args.Term)
	}
	if rf.votedFor != -1 {
		return
	}
	// 比较Candidate的最后一条日志与本Follower的最后一条日志谁更新
    // 关联细节2.3.1
	if rf.isMoreUpToDateLocked(args.LastLogIndex, args.LastLogTerm) {
		return
	}
	reply.VoteGranted = true
	rf.votedFor = args.CandidateId
	rf.resetElectionTimerLocked()
}

需要注意的细节

比较日志新旧

论文中关于两个日志谁更新的比较规则是下面这样描述的。总结一下就是首先比较任期,任期大的更新;任期相同则比较索引,索引更大的更新。

Raft determines which of two logs is more up-to-date by comparing the index and term of the last entries in the logs. If the logs have last entries with different terms, then the log with the later term is more up-to-date. If the logs end with the same term, then whichever log is longer is more up-to-date.

分割选票

关于分割选票可以采用随机超时时间的方法来解决。选举超时时间通常在[T, 2T]区间内(例如150ms~300ms)。由于随机性节点不太可能再同时开始竞选,所以先竞选的节点有足够的时间来向其他节点索要选票。

日志同步/心跳

实现流程(理论)

整体上看是:Leader服务来着客户端的请求,每个客户端请求都包含一个要由复制状态机执行的命令,Leader将命令作为新条目追加到其日志中,然后并行地向其他每个服务器发出AppendEntries RPC以同步该命令到全部节点。
详细来说:开始日志同步的过程中Leader需要通过AppendEntries RPC进行日志同步和心跳,该RPC的请求参数包含term、leaderID、prevLogIndex、prevLogTerm、entries、leaderCommit。其中prevLogIndex是根据Leader中定义的nextIndex数组中该Follower的值得到的,prevLogTerm是Leader中prevLogIndex处的日志的任期,entries则包含prevLogIndex之后的所有日志,leaderCommit是Leader已经commit的日志的索引用来推进Leader的apply和Follower日志的commit、apply。当Follower节点收到AppendEntries RPC指令之后,首先比较任期如果领导的任期小于自己则直接返回当前任期让Leader下台。接下来看Follower中prevLogIndex索引处的日志是否任期是prevLogTerm,如果是则匹配成功,接下来把请求中的entries复制到本地的日志中,并且更新该节点的nextIndex数组和matchIndex数组;否则返回返回false让Leader的prevLogIndex继续向前试探,重新发送AppendEntries RPC请求给Follower直到匹配成功。这一部分的更细节的描述见 3.3.1.日志同步请求能否成功的逻辑
对于Leader来说:在Follower接收AppendEntries RPC并成功把日志复制到本地之后,会更新matchindex数组,这个数组更新了之后就可能使得有新的日志已经从Leader被大多数节点复制完成,这时Leader就需要更新自己的commitIndex,同时如果commitIndex一更新就需要触发apply日志的Ticker进行日志应用,具体细节见 3.3.3.apply日志的业务逻辑。这里关于commitIndex的更新有个细节就是Leader只能提交当前任期的日志而不能提交之前任期的日志,具体细节见 3.3.2.不能commit非当前任期的日志
对于Follower来说:Follower会根据AppendEntries RPC的请求参数中的leaderCommit进行自身commitIndex的更新进而推进日志的apply。Leader发送请求的请求参数中的leaderCommit是依据自身的commitIndex来确定的,所以上面的Leader的commitIndex的更新就会使得Leader发送请求的请求参数中的leaderCommit进行更新,进而推进Follower日志的apply。Follower的commitIndex一更新就需要触发apply日志的Ticker进行日志应用,具体细节见 3.3.3.apply日志的业务逻辑。这里还有另外一个细节就是不能直接把Leader的leaderCommit赋值给Follower的commitIndex更新Follower已提交日志索引,还需要考虑Follower的长度,具体细节见 3.3.4.更新Follower的commitIndex时需注意的点

实现细节 (代码)

承接第二部分当Candidate当选Leader后就会go一个replicationTicker协程定时发送心跳以及日志同步请求。

func (rf *Raft) replicationTicker(term int) {
	for !rf.killed() {
		ok := rf.startReplication(term)
		if !ok {
			break
		}
		time.Sleep(replicateInterval)  // replicateInterval为一个固定的值
	}
}

Leader向所有其他节点进行同步日志并对返回结果处理的逻辑如下:

func (rf *Raft) startReplication(term int) bool {
    rf.mu.Lock()
    for peer := 0; peer < len(rf.peers); peer++ {
        if peer == rf.me {
            rf.matchIndex[peer] = len(rf.log) - 1
            rf.nextIndex[peer] = len(rf.log)
            continue
        }
        // 根据要发送节点的nextIndex数组中的数值确定prevLogIndex
        prevIdx := rf.nextIndex[peer] - 1
        prevTerm := rf.log[prevIdx].Term
        args := &AppendEntriesArgs{
            Term:         rf.currentTerm,
            LeaderId:     rf.me,
            PrevLogIndex: prevIdx,
            PrevLogTerm:  prevTerm,
            Entries:      rf.log[prevIdx+1:],  // 将prevLogIndex之后的日志填充进来
            LeaderCommit: rf.commitIndex,  // 根据Leader的commitIndex确定发送的LeaderCommit
        }
        go replicateToPeer(peer, args)
    }
	rf.mu.Unlock()
    return true
    // Leader对单个节点发送日志同步请求并处理响应的匿名函数的定义
    replicateToPeer := func(peer int, args *AppendEntriesArgs) {
        reply := &AppendEntriesReply{}
        ok := rf.sendAppendEntries(peer, args, reply)
        rf.mu.Lock()
        defer rf.mu.Unlock()
        if !ok {
            return
        }
        // 如果得到的返回任期比我Leader,那么就需要变成Follower并return
        if reply.Term > rf.currentTerm {
            rf.becomeFollowerLocked(reply.Term)
            return
        }
        // 如果不匹配则需要试探更前面的日志,最后通过更新nextIndex数组来保存要试探的索引
        // 关联细节3.3.1
        if !reply.Success {
            idx, term := args.PrevLogIndex, args.PrevLogTerm
            for idx > 0 && rf.log[idx].Term == term {
                idx--
            }
            rf.nextIndex[peer] = idx + 1
            return
        }
    	// 如果匹配成功则需要更新matchIndex,nextIndex两个数组
        rf.matchIndex[peer] = args.PrevLogIndex + len(args.Entries) 
        rf.nextIndex[peer] = rf.matchIndex[peer] + 1
    	// 匹配成功则需要判断是否要更新commitIndex
        majorityMatched := rf.getMajorityIndexLocked()
        // 关联细节3.3.2
        if majorityMatched > rf.commitIndex && rf.log[majorityMatched].Term == rf.currentTerm {
            rf.commitIndex = majorityMatched
            // 关联细节3.3.3
            rf.applyCond.Signal()  // 如果更新了commitIndex那么触发Leader节点进行apply
        }
    }
}
func (rf *Raft) sendAppendEntries(server int, args *AppendEntriesArgs, reply *AppendEntriesReply) bool {
	ok := rf.peers[server].Call("Raft.AppendEntries", args, reply)
	return ok
}

AppendEntries RPC的定义也就是Follower对Leader的日志同步请求的回调函数如下:

func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply) {
	rf.mu.Lock()
	defer rf.mu.Unlock()
	reply.Term = rf.currentTerm
	reply.Success = false
    // 如果Leader任期比我Follower还小,那你应该下台
	if args.Term < rf.currentTerm {
		return
	}
    // 如果你Leader的任期比我Candidate或者Follower大,那我需要变成Follower
	if args.Term >= rf.currentTerm {
		rf.becomeFollowerLocked(args.Term)
	}
	// 如果我Leader要尝试给你同步的日志索引比你Follower的全部日志还长,
    // 那说明你缺日志,不能从PrevLogIndex处开始同步
    // 关联细节3.3.1
	if args.PrevLogIndex >= len(rf.log) {
		return
	}
    // 如果日志不匹配PrevLogIndex索引处的任期一致说明不匹配
    // 关联细节3.3.1
	if rf.log[args.PrevLogIndex].Term != args.PrevLogTerm {
		return
	}
    // 能运行到这里说明匹配成功,就需要把你Leader要发给我的Entries我放到我的日志中
	rf.log = append(rf.log[:args.PrevLogIndex+1], args.Entries...)
	reply.Success = true
	// 如果你Leader的已提交日志索引比我Follower大,
    // 那么我就需要更新我的commitIndex并触发日志apply
	if args.LeaderCommit > rf.commitIndex {
        // 关联细节3.3.4
		rf.commitIndex = min(args.LeaderCommit, len(rf.log)-1)
        // 关联细节3.3.3
		rf.applyCond.Signal()
	}
	rf.resetElectionTimerLocked()  // 收到了心跳重置超时计时器
}

需要注意的细节

日志同步请求能否成功的逻辑

在第一部分中我们说到Raft算法通过索引和任期号唯一的标识一条日志条目,所以判断Leader发送给Follower的AppendEntries RPC的请求能否成功的关键就是看Follower的prevLogIndex索引处的任期是否等于prevLogTerm,相等则可以将请求中的entries添加的Follower的日志中,否则失败需要减小nextIndex数组中该Follower的索引值,进而减小下次试探的prevLogIndex的值。
另外还需要注意一个容易忽视的可能导致的bug就是不匹配有两种情况,一种是Follower的prevLogIndex索引处的任期不一致,还有一种就是Follower中缺日志进而导致Follower中的日志长度<=prevLogIndex,这个情况应该提前判断避免数组越界。

不能commit非当前任期的日志

在论文中给出一个反例,我们详细看一下这个反例。
image.png
(a) S1 是领导者,复制索引2 处的日志条目到S2。
(b) S1崩溃,通过来自 S3、S4 和自身的投票,S5 被选为term 3的领导者,并在日志索引 2 处接收到一个来自客户端的跟S1、S2不同的日志条目。
© S5崩溃,S1重新启动,被选为leader,并继续复制日志到其他节点。此时,term 2中的日志条目已在大多数服务器上复制,但尚未提交。
(d) 如果S1又崩溃了,S5可以被选为leader(来自S2、S3和S4的投票),并用自己在term 3中的条目覆盖索引2的term 2的条目。
(e) 但是,如果S1在崩溃之前在大多数服务器上复制其当前任期的条目,如(e)所示,则该条目被提交(S5无法赢得选举)。此时,也提交了日志中前面的所有条目。
通过上面的(d)可以看到如果我在©处当term 2中的日志条目已在大多数服务器上复制时如果进行提交,那么在(d)处会把已提交的term 2的日志覆盖掉,这种情况是极其不允许的!而且通过(e)可以看到如果S1在崩溃之前在大多数服务器上复制其当前任期的条目,那么一方面能压制S5获取不到大多数投票,另一方面在提交当前term 4的日志时也会间接的term 2的日志进行提交。

apply日志的业务逻辑

可以分为Leader的apply日志和Follower的apply日志。
首先讨论一下Leader可能apply日志的时机,在replicateToPeer匿名函数中,Leader向单个Follower同步成功日志之后需要判断一下commitIndex需不需要更新,如果需要更新,那么说明有新的日志被提交也就会触发Leader日志apply。
其次说一下Follower可能apply日志的时机,当上一段中commitIndex更新之后由于leaderCommit = commitIndex,也就会导致leaderCommit更新,在AppendEntries函数的最后可以看到如果leaderCommit更新变大了就会触发Follower的日志apply。

更新Follower的commitIndex时需注意的点

这个是极易忽视的一点,在Follower处理AppendEntries RPC请求时,最后如果发送过来的leaderCommit参数比我Follower当前的commitIndex大,那么我Follower需要更新我的commitIndex,但是,你注意但是啊,这个commitIndex再大也不能超过我日志的总长度-1吧,这个是及其容易忽视的一点。

总结

在本文结合Raft论文和mit 6.5840(原6.824)的lab2的partA和partB实验对Raft算法的基础概念以及两大重要部分投票选举和日志同步对Raft算法进行了细致的讨论。在后面的实验中还有关于日志持久化和日志压缩的内容,之后会在学习完成之后进行相应内容的更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/342484.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

目录 一、二叉树的创建(伪)二、二叉树的遍历2.1 前序遍历2.2 中序遍历2.3 后序遍历 三、二叉树节点个数及高度3.1 二叉树节点个数3.2 二叉树叶子节点个数3.3二叉树第k层节点个数3.4 二叉树查找值为x的节点 四、二叉树的创建(真) 一、二叉树的创建(伪) 在学习二叉树的基本操作前…

vertica10.0.0单点安装_ubuntu18.04

ubuntu的软件包格式为deb&#xff0c;而rpm格式的包归属于红帽子Red Hat。 由于项目一直用的vertica-9.3.1-4.x86_64.RHEL6.rpm&#xff0c;未进行其他版本适配&#xff0c;而官网又下载不到vertica-9.3.1-4.x86_64.deb&#xff0c;尝试通过alian命令将rpm转成deb&#xff0c;但…

【GitHub项目推荐--Git 教程】【转载】

本开源项目是 Will 保哥在 2013 第 6 界 IT 邦帮忙铁人赛年度大奖的得奖著作。这是一个 Git 教程&#xff0c;这个开源教程用 30 天的时间&#xff0c;带领大家详细了解使用 Git 。 重点介绍了 Git 的一些常用操作&#xff0c;以及日常工作中实际应用场景讲解&#xff0c;下图…

让二叉树无处可逃

志不立&#xff0c;天下无可成之事。 ——王阳明 二叉树 1、树&#xff1f;什么是树1、1、基本概念1、2、树的相关概念1、3、树的表示方式1、4、树的实际运用 2、二叉树&#xff1f;只有两个分支吗&#xff1f;2、1、基本概念2、2、二叉树的相关定义2、3、二叉树的相关性质2、4…

Dockerfile-xxxx

1、Dockerfile-server FROM openjdk:8-jdk-alpine WORKDIR /app COPY . . CMD java -Xms1536M -Xmx1536M -XX:UseG1GC -jar -Dlog4j2.formatMsgNoLookupstrue -Dloader.pathresources,lib -Duser.timezoneGMT-05 /app/server-main-1.0.0.jar 2、Dockerfile-bgd #FROM openjdk…

一站式社交媒体管理:揭秘HubSpot的全面解决方案

在当今数字化时代&#xff0c;社交媒体已经成为企业推广和品牌塑造的关键渠道。而HubSpot作为一站式市场营销平台&#xff0c;不仅致力于协助企业实现综合市场目标&#xff0c;更在社交媒体管理领域提供了全面解决方案。今天运营坛将深入探讨HubSpot如何成为一站式社交媒体管理…

DAY08_SpringBoot—整合Mybatis-Plus

目录 1 MybatisPlus1.1 MP介绍1.2 MP的特点1.3 MybatisPlus入门案例1.3.1 导入jar包1.3.2 编辑POJO对象1.3.3 编辑Mapper接口1.3.4 编译YML配置文件1.3.5 编辑测试案例 1.4 MP核心原理1.4.1 需求1.4.2 原理说明1.4.3 对象转化Sql原理 1.5 MP常规操作1.5.1 添加日志打印1.5.2 测…

哪个牌子的洗地机质量好?值得入手的洗地机

在家庭清洁方面&#xff0c;洗地机绝不是被认为的智商税。实际上&#xff0c;洗地机是一种非常实用的清洁工具&#xff0c;其最大的优点在于能够高效地协助我们清理家居环境&#xff0c;不论是在何种场景下&#xff0c;都能有效提升卫生水平。然而&#xff0c;由于市场上存在众…

seata1.8 + nacos,store.mode=db

吐槽一下&#xff0c;官方文档是真少&#xff0c;而且更新很不及时。。 官网地址&#xff1a;直接部署 | Apache Seata 上述地址也包含了下载链接&#xff0c;我用的1.8版本&#xff0c;挑一些关键配置说一下 1、服务器上&#xff0c;seata/conf/application.yml&#xff0c;将…

【数据结构】从顺序表到ArrayList类

文章目录 1.线性表1.1线性表的概念2.顺序表2.1顺序表的概念2.2顺序表的实现2.3接口的实现(对数组增删查改操作)3.ArrayList简介4. ArrayList使用 4.1ArrayList的构造4.2 ArrayList的方法4.3 ArrayList的遍历 1.线性表 1.1线性表的概念 线性表&#xff08;linear list&#xf…

HCIP-10

交换机的作用&#xff1a; 区别集线器&#xff08;HUB&#xff09;&#xff0c;HUB为物理层设备&#xff0c;只能直接转发发电流&#xff1b; 交换机为数据链路层设备&#xff0c;可以将电流与二进制转换&#xff0c;实现了以下功能&#xff1a; 无限的传输距离彻底解决了冲突…

条件概率、全概率和贝叶斯公式

目录 1. 条件概率 1.1 条件概率说明 1.2 举例说明 1.3 条件概率公式 2. 全概率公式 2.1 条件概率公式 2.2 一个特例公式 2.3 全概率公式的意义 3. 贝叶斯公式 3.1 贝叶斯公式的推导 3.2 贝叶斯公式一个特例 ​​​​​​​3.3 贝叶斯公式的意义 4. 先验概率 &…

6.1 实现微服务:匹配系统(上中下)

WebSocketConfig。ja&#xff08;onOpen建立连接时自动调用onClose关闭链接时自动调用&#xff08;user还存在就在线程移除&#xff09;onMessageServer从Client接收消息时触发&#xff09; status&#xff1a;match来切换界面是不是匹配还是比赛的 解析token&#xff0c;如果…

Elastic Observability 8.12:AI 助手、SLO 和移动 APM 支持的正式发布

作者&#xff1a;来自 Elastic Tom Grabowski, Akhilesh Pokhariyal Elastic Observability 8.12 宣布 AI Assistant 全面上市 (正式发布)、服务级别目标 (SLO) 和移动 APM 支持&#xff1a; 服务级别目标 (service level objective - SLO)&#xff1a;现在正式发布版允许 SRE…

python:socket基础操作(2)-《udp发送信息》

基础发送udp信息 1.导入socket模块 2.使用udp模块 3.发送内容 4.关闭套接字 很简单的4步就可以实现udp的消息发送 import socket # 导入模块udp_socket socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # 使用ipv4 udp协议udp_socket.sendto(b"hello world",(&…

即插即用篇 | UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv

大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets…

精品基于Uniapp+springboot智慧校园管理系统App课程选课成绩

《[含文档PPT源码等]精品基于Uniappspringboot智慧校园管理系统App》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;Java 后台框架&#xff1a;springboot、ssm …

ffmpeg使用及java操作

1.文档 官网: FFmpeg 官方使用文档: ffmpeg Documentation 中文简介: https://www.cnblogs.com/leisure_chn/p/10297002.html 函数及时间: ffmpeg日记1011-过滤器-语法高阶&#xff0c;逻辑&#xff0c;函数使用_ffmpeg gte(t,2)-CSDN博客 java集成ffmpeg: SpringBoot集成f…

【网络安全】-基本工具msf

secure 1、有此漏洞的目标主机2、无此漏洞的目标主机&#xff08;常用&#xff09; ps.本着兴趣爱好&#xff0c;加强电脑的安全防护能力&#xff0c;并严格遵守法律和道德规范。msf&#xff08;metasploit framework&#xff09;是一个开源的渗透测试框架&#xff0c;用于开发…

“智汇语言·驭领未来”——系列特辑:LLM大模型信息获取与企业应用变革

“智汇语言驭领未来”——系列特辑&#xff1a;LLM大模型信息获取与企业应用变革 原创 认真的飞速小软 飞速创软 2024-01-16 09:30 发表于新加坡 本期引言 LLM&#xff08;Large Language Model&#xff09;大型语言模型以其自然语言理解和生成能力&#xff0c;正以前所未有的…
最新文章