vp9协议笔记

vp9协议笔记📒

本文主要是对vp9协议的梳理,协议的细节参考官方文档:VP9协议链接(需要加速器)

vp9协议笔记

  • vp9协议笔记📒
  • 1. 视频编码概述
  • 2. 超级帧superframe(sz):
  • 2. frame(sz)
  • 3. vp9中的一些索引解释:
  • 4. decode-tiles()
  • 5. decode_partition
  • 6. Residual()
  • 7. 参考文献

1. 视频编码概述

🐶视频编码的流程大概是预测 + 残差 + loop filter(LPF)的模式;

🐭编码端 : 编码端首先对图像进行合理的划分,之后对划分的块(CU)采用帧内预测或帧间预测的方式,对图像进行预测,筛选出误差最小的预测模式,但这样预测出来的图像和原图像会有很大误差,这个误差被称为残差(residual, TU);

🐹编码端可能会对残差进行进一步的split划分(因此TU的大小是小于CU的, H265有对TU进一步的划分, 而vp9中没有),之后再对划分后的块进行DCT变换和量化,以减小残差所占的字节大小(这一步一般图像会有少许的损失);

🐰为了弥补变换量化产生的损失,编码端会编码一种选择一种合适的loop_filter(lpf)过滤器的模式,对图像进行补偿;


请添加图片描述

🐺如图所示, 解码端拿到预测模式,根据预测模式对图像进行预测;同时对拿到的残差进行解量化和反变换; 将预测图像和接量化,反变换后的残差相加,再根据lpf的模式进行滤波,就可以完成图像的解码了。

2. 超级帧superframe(sz):

superframe( sz ) {
	for( i = 0; i < NumFrames; i++ )
		frame( frame_sizes[ i ] )
	superframe_index( )
}
  • 🐸各个帧的解析函数frame(frame_ize)需要用的fram_size在superframe_index()里,为什么super_frame_index在后面才解码?
    • Q1 : 该解析函数顺序并不是真实解码顺序,只是码流的排列顺序。解析超级帧时,整个超级帧的大小sz是已知的,直接先读取大小为sz的字符串的最后1个字节(superframe_header),解析后就知道frame的数量和frame_size的大小;解析完superframe-index然后才开始从头开始解析各个frame;
    • Q2. 由于我们编码完所有的帧信息才能知道各个帧的大小,所以superframe index放在超级帧的后面;而解析的时候是先解析superframe index,再从头解析各个frame
  • 🐯为什么superframe header要解析两遍
    • Q : 因为vp9支持superframe,也支持不用superframe的结构,解析两遍(对比一下是否存在这个信息)和superframe-mark标志的,一起判断该段是否为超级帧;

2. frame(sz)

frame( sz ) {
	startBitPos = get_position( )
	uncompressed_header( )
	trailing_bits( )
	if ( header_size_in_bytes == 0 ) {
		while ( get_position( ) < startBitPos + 8 * sz)
			padding_bit
		return
	}
	load_probs( frame_context_idx )
	load_probs2( frame_context_idx )
	clear_counts( )
	init_bool( header_size_in_bytes )
	compressed_header( )
	exit_bool( )
	endBitPos = get_position( )
	headerBytes = (endBitPos - startBitPos) / 8
	decode_tiles( sz - headerBytes )
	refresh_probs( )
}
  • 🐻uncompress-header()为一些图像基本信息,bit位宽,YUV格式,色彩空间,帧间预测所需要用到的参考帧的更新等等;
  • 🐷header_size_in_byte为0时表示该帧直接copy其他帧信息,不需要进一步解码了,这个变量的解析在ubcompress-header中;
  • 🐽vp9采用的基于概率的压缩,具体可以参考协议第9节,很多压缩的语法元素有一张概率表,解码过程是会用到这张概率表的,而这张概率表也是会在运算过程中更新的。load-probs(idx)是加载frame_context_idx表示的这张概率表,frame_context_idx的值在uncompress-header中解析;
  • 🐮编解码过程中会将很多语法元素编码的次数记录下来,以便后面在refresh_probs()中更新概率模型;因此开始解析压缩后的信息前,clear_count()清空计数器;
  • 🐵Compress_header()里解析的是概率表,因为vp9并不是完全按上面load-probs加载的概率表来计算的,部分位置需要更新后再使用,哪些概率信息需要更新,更新值是多少,就在compress-header里解析;概率表用于从二进制码流里解析各个语法元素(详见协议第9节)
  • 🐒decode-tiles()开始正式解析还原这个图像;

3. vp9中的一些索引解释:

  • 🐴segment id : sement id对应的位置存储了之前解码过的图像的skip,QP,参考帧等信息,根据一些segment的相关标志位决定这些参数是直接采用segment id位置 所对应这些信息,还是单独解码这些信息;
  • 🐎 frame_to_show_map_idx : 表示该帧直接显示frame_to_show_map_idx所对应的图像(之前解码存储的图像),该帧解码结束;
  • 🐫frame_context_idx : vp9的字符串解析过程中会用到很多概率表(第9节),load_probs( frame_context_idx )表示加载frame_context_idx所对应的概率表;

4. decode-tiles()

  • 🐑tileCols,这一帧图像有多少列tile
  • 🐘tileRows,这一帧图像有多少行tile
  • 🐼tileROw:当前tile位于该帧的第几行tile
  • 🐍tileCOl: 当前tile位于该帧的第几行tile
  • 🐦MiROWs:这一帧图像有多少行8*8块
  • 🐤MiCols:这一帧图像有多少行8*8块
  • 🐥MiROWSTART : 该tile的起始行的位置(8*8为单位,比如若为20,表示该tile位于一帧图像的y坐标的160像素点);
  • 🐣简单来说,一个Mi的为8*8个r像素点;

5. decode_partition

  • 🐔bsize是根据partition划分后的大小,也就是说,如果对88进行划分,之后一定进decode-block()。 如果bsize是88,partition 若为 NONE则一定进入decode_ block;其他partition对应的bsize为44,84,48,也是直接进decode block(一个88,无论怎么划分,都只解码一次decode_block);需要注意的是,decode_block函数里虽然Misze是44,84或48,但实际上都是在处理一个88的块;
  • 🐧如果不需要编解码残差(skip),那还需要编码tx size吗?需要,intra mode预测要用到tx_size;

6. Residual()


Token : extra_bits[ 11 ][ 3 ] = {
{ 0, 0, 0},
{ 0, 0, 1},
{ 0, 0, 2},
{ 0, 0, 3},
{ 0, 0, 4},
{ 1, 1, 5},
{ 2, 2, 7},
{ 3, 3, 11},
{ 4, 4, 19},
{ 5, 5, 35},
{ 6, 14, 67}
}

  • 【0】 位置是概率解码时要用到的;
  • 【1】 表示offset的位宽
  • 【2】 表示base

残差的绝对值 = base + offset;

例如:

  • 🐟若token为 0(ZERO_TOKEN),则base为0,offset位宽为0,则残差的绝对值为0;
  • 🐳若token为7(DCT_VAL_CAT3)则base = 7, offset位宽为2bit([0 , 3]),因此残差绝对值的取值范围为[7 , 10];
  • 🐋若token为8(DCT_VAL_CAT4)则base = 11, offset位宽为3bit[0 , 7],因此表示残差绝对值的取值范围为[11 , 18];

7. 参考文献

【1】VP9协议链接(需要加速器)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/345652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【码农新闻】浏览器上有趣的 Console 命令,VSCode 插件 FreeWindow......

目录 【码农新闻】浏览器上有趣的 Console 命令,VSCode 插件 FreeWindow...... 浏览器上有趣的 Console 命令VSCode 插件 FreeWindow拖拽竟然还能这样玩!阮一峰 ES6 教程总结学习网站总结与整理买临期食品的年轻人,在向“吃喝内卷”低头文章所属专区 码农新闻 欢迎各位编程大…

100T数据存进服务器分几步?

大家好&#xff0c;我是豆小匠。 这期来聊聊数据存储相关的问题&#xff0c;包括&#xff1a; 容量评估。技术选型。容灾处理。 另外&#xff0c;文末赠送免费定制红包封面哦&#xff01; 1. 容量评估 通过对容量&性能的评估&#xff0c;可以把业务需求转化成技术语言描…

Mysql数据库DQL查询语言之表连接(联合查询)

表连接 关系字段&#xff1a;两表中有关联关系的字段 \关系字段&#xff1a;两表之间存在关系的字段 什么是表连接&#xff1f; 当我们的查询结果需要从多张表中获取时&#xff0c;此时应该让表之间建立连接&#xff0c;同时获取数据 内连接 特点&#xff1a;同时对连接双方做…

SpringBoot集成mybatis时idea控制台中文乱码问题解决

在application.yml中配置好映射文件打印数据库日志文件时&#xff0c;控制台出现乱码的情况解决如下 问题 在执行查询操作的时候&#xff0c;查询时可以查看是没有问题的&#xff0c;但是控制台乱码了 解决 在File-Setting-Editor-File Encodings中设置如图所示就可以了 现在…

打 jar 包运行 在windows 平台控制台和日志 乱码解决

--拒絕鷄巴囉嗦&#xff0c;直接解決問題 我们在Windows下运行jar包时&#xff0c;常常会出现乱码&#xff0c;主要分为dos窗口输出的日志中出现乱码和程序返回数据出现乱码。 dos窗口输出的日志中出现乱码 执行如下命令&#xff0c;将控制台输出编码改为UTF8&#xff1a; ch…

c++文件操作(2)-- 按照指定格式读写文件

目录 按照指定格式写文件 代码说明: 按照指定格式读文件 -- 解析一定格式的字符串 代码说明&#xff1a; 注意&#xff1a; 问: 为什么使用getline()? 按照指定格式写文件 在实际开发中&#xff0c;我们以一定的格式写入文件当中。 其实就是使用stringstream类对…

【vite】找不到模块“vite”或其相应的类型声明

今天在用vite搭建项目时&#xff0c;在vite.config.ts文件中 ts报错找不到模块“vitejs/plugin-vue”或其相应的类型声明。 原因&#xff1a;项目中缺少了相应的依赖包或 TypeScript 类型声明。可以按照以下步骤进行检查&#xff1a; 1. 确保安装了相应的依赖包 如果在pack…

Unity中URP下获取额外灯数量

文章目录 前言一、SimpleLit下额外灯数量的获取1、在 SimpleLit 下&#xff0c;先获取了额外灯的数量2、对其进行循环计算每一个额外灯3、GetAdditionalLightsCount在这里插入图片描述 二、GetAdditionalLightsCount实现了什么1、_AdditionalLightsCount.x2、unity_LightData.y…

Tarjan 算法(超详细!!)

推荐在 cnblogs 上阅读 Tarjan 算法 前言 说来惭愧&#xff0c;这个模板仅是绿的算法至今我才学会。 我还记得去年 CSP2023 坐大巴路上拿着书背 Tarjan 的模板。虽然那年没有考连通分量类似的题目。 现在做题遇到了 Tarjan&#xff0c;那么&#xff0c;重学&#xff0c;开…

防御课程—华为USG6000V1的配置实验(一)

实验拓扑&#xff1a; 实验分析 由实验拓扑图需求分析可知我们在生产区和办公区需要用到子接口技术 实验配置 在Cloud1上配置 在DMZ区域配置 在server1上配置在server2上配置在防火墙上进行的配置 由实验拓扑图可知防火墙与DMZ区域相连的接口为GigabitEthernet1/0/0接口 …

初识SpringBoot

SpringBoot以约定大于配置的核心思想,默认帮我们进行了很多设置,简单来说就是SpringBoot其实不是什么新的框架&#xff0c;它默认配置了很多框架的使用方式&#xff0c;就像maven整合了所有的jar包&#xff0c;spring boot整合了所有的框架 。 创建的包一定要在项目主程序入口…

【排序算法】C语言实现归并排序,包括递归和迭代两个版本

文章目录 &#x1f680;前言&#x1f680;归并排序介绍及其思想&#x1f680;递归实现&#x1f680;迭代实现 &#x1f680;前言 大家好啊&#xff01;阿辉接着更新排序算法&#xff0c;今天要讲的是归并排序&#xff0c;这里阿辉将讲到归并排序的递归实现和迭代实现&#xff…

CPU中的算术逻辑单元(ALU)

ALU有2个单元&#xff0c;1个算术单元和1个逻辑单元 算数单元 1 bit加法 半加器 由一个异或门&#xff08;XOR&#xff09;和与门&#xff08;AND&#xff09;两个逻辑门构成&#xff0c;异或门表示无进位加法&#xff08;sum&#xff09;&#xff0c;而与门表示进位&…

k-Wave仿真例程:创建超声换能器并绘制声场分布

k-Wave介绍 k-Wave软件是为了模拟超声波在1D、2D或3D中的传播。 应用示例包括&#xff1a; - 均匀和非均匀介质中的传播 - 模拟各种类型的传感器 - 模拟多普勒效应 - 衍射、折射和反射 - 光声、超声成像 - 波束合成、成像重建 - 模拟弹性波 安装k-Wave 安装k-Wave需要几个步…

基于springboot+vue的小徐影城管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

移动端测试如何学,超详细的APP测试攻略送上

前言 随着手机应用市场发展的逐渐成熟&#xff0c;手机APP已经渗透到人们的吃穿住行生活&#xff0c;比如手机支付APP、通讯APP、各大应用软件等&#xff0c;关于手机APP安全性能的重要性不言而喻。 鉴于此&#xff0c;做好手机APP测试对于软件开发方把控产品质量有着重要意义…

计算机408真的很难吗❓|深度分析+实操上岸规划

在下面这篇文章中&#xff0c;LUCEN详细分析了24考研的难度以及25考研人该怎么办 24考研计算机很难&#xff01;25考研你就这么干 如果你对于计算机考研择校有任何疑问&#xff0c;那么下面这篇文章一定能够帮助你&#xff1a; 计算机择校指南&#xff0c;内含300所院校 如…

Linux命令-top

1、top命令简介 top命令是linux系统常用命令之一&#xff0c;能够实时显示系统各个进程的资源占用情况&#xff0c;类似于windows系统的任务管理器。 需要注意的是&#xff1a;top命令监控的最小单位是进程&#xff0c;如果想监控更小单位时&#xff0c;就需要用到ps或者nets…

代码评审——随机数Random问题

问题描述&#xff1a; 为了获取唯一值&#xff0c;经常会依赖产生随机数来保证唯一性。在获取随机数时&#xff0c;如果使用错误的方法&#xff0c;会比较低效。 可以参考以下代码&#xff1a; public static String geneRundomNo(){Random rnew Random();int numr.nextInt(…

springboot114基于多维分类的知识管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的基于多维分类的知识管理系统 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章…
最新文章