掌握大语言模型技术: 推理优化

掌握大语言模型技术_推理优化

在这里插入图片描述

堆叠 Transformer 层来创建大型模型可以带来更好的准确性、少样本学习能力,甚至在各种语言任务上具有接近人类的涌现能力。 这些基础模型的训练成本很高,并且在推理过程中可能会占用大量内存和计算资源(经常性成本)。 当今最流行的大型语言模型 (LLM) 的参数大小可以达到数百到数千亿,并且根据用例,可能需要摄取长输入(或上下文),这也会增加费用。

这篇文章讨论了LLM推理中最紧迫的挑战,以及一些实用的解决方案。 读者应该对 Transformer 架构和一般的注意力机制有基本的了解。 掌握 LLM 推理的复杂性至关重要,我们将在下一节中讨论。

了解LLM推理

大多数流行的纯解码器 LLM(例如 GPT-3)都是针对因果建模目标进行预训练的,本质上是作为下一个词预测器。 这些 LLM 将一系列标记作为输入,并自回归生成后续标记,直到它们满足停止条件(例如,生成标记数量的限制或停止词列表)或直到生成特殊的 <end> 标记生成结束的令牌。 该过程涉及两个阶段:预填充阶段和解码阶段。

请注意,标记是模型处理的语言的原子部分。 一个令牌大约是四个英文字符。 所有自然语言输入在输入模型之前都会转换为标记。

预填充阶段或处理输入

在预填充阶段,LLM 处理输入令牌以计算中间状态(键和值),用于生成“第一个”新令牌。 每个新标记都依赖于所有先前的标记,但由于输入的全部范围已知,因此在较高级别上,这是高度并行化的矩阵-矩阵运算。 它有效地使 GPU 利用率饱和。

解码阶段或生成输出

在解码阶段,LLM 一次自回归生成一个输出标记,直到满足停止条件。 每个顺序输出令牌需要知道所有先前迭代的输出状态(键和值)。 与预填充阶段相比,这就像矩阵向量运算未充分利用 GPU 计算能力。 数据(权重、键、值、激活)从内存传输到 GPU 的速度决定了延迟,而不是计算实际发生的速度。 换句话说,这是一个内存限制操作。

本文中的许多推理挑战和相应的解决方案都涉及此解码阶段的优化:高效的注意力模块、有效管理键和值等等。

不同的LLM可能使用不同的标记器,因此比较它们之间的输出标记可能并不简单。 在比较推理吞吐量时,即使两个 LLM 每秒输出的令牌相似,如果它们使用不同的令牌生成器,它们也可能不相等。 这是因为相应的标记可能代表不同数量的字符。

批处理

提高 GPU 利用率和有效吞吐量的最简单方法是通过批处理。 由于多个请求使用相同的模型,因此权重的内存成本被分散。 较大批量传输到 GPU 一次处理将利用更多可用计算。

然而,批量大小只能增加到一定限制,此时可能会导致内存溢出。 为了更好地理解为什么会发生这种情况,需要查看键值 (KV) 缓存和 LLM 内存要求。

传统批处理(也称为静态批处理)不是最佳的。 这是因为对于批次中的每个请求,LLM 可能会生成不同数量的完成令牌,并且随后它们具有不同的执行时间。 因此,批次中的所有请求都必须等待最长的请求完成,而生成长度的巨大差异可能会加剧这种情况。 有一些方法可以缓解这种情况,例如稍后将讨论的动态批处理。

键值缓存

解码阶段的一种常见优化是 KV 缓存。 解码阶段在每个时间步生成单个令牌,但每个令牌取决于所有先前令牌的键和值张量(包括预填充时计算的输入令牌的 KV 张量,以及当前时间步之前计算的任何新 KV 张量) 。

为了避免在每个时间步重新计算所有标记的所有这些张量,可以将它们缓存在 GPU 内存中。 每次迭代,当计算出新元素时,它们都会被简单地添加到正在运行的缓存中,以便在下一次迭代中使用。 在一些实现中,模型的每一层都有一个KV缓存。

LLM内存要求

实际上,GPU LLM 内存需求的两个主要贡献者是模型权重和 KV 缓存。

  • 模型权重:模型参数占用内存。 例如,具有 70 亿个参数的模型(例如 Llama 2 7B),以 16 位精度(FP16 或 BF16)加载,将占用大约 7B * sizeof(FP16) ~= 14 GB 的内存。
  • KV缓存:自注意力张量的缓存占用内存以避免冗余计算。
    使用批处理时,批处理中每个请求的 KV 缓存仍然必须单独分配,并且可能会占用大量内存。 下面的公式描述了 KV 缓存的大小,适用于当今最常见的 LLM 架构。

每个令牌的 KV 缓存大小(以字节为单位) = 2 * (num_layers) * (num_heads * dim_head) * precision_in_bytes

第一个因子 2 代表 K 和 V 矩阵。 通常,(num_heads * dim_head)的值与transformer的hidden_size(或模型的维度,d_model)相同。 这些模型属性通常可以在模型卡或关联的配置文件中找到。

输入批次中输入序列中的每个标记都需要此内存大小。 假设半精度,KV缓存的总大小由以下公式给出。

KV 缓存的总大小(以字节为单位) = (batch_size) * (sequence_length) * 2 * (num_layers) * (hidden_size) * sizeof(FP16)

例如,对于 16 位精度的 Llama 2 7B 模型,批量大小为 1,KV 缓存的大小将为 1 * 4096 * 2 * 32 * 4096 * 2 字节,即约 2 GB。

有效管理此 KV 缓存是一项具有挑战性的工作。 内存需求随着批量大小和序列长度线性增长,可以快速扩展。 因此,它限制了可服务的吞吐量,并对长上下文输入提出了挑战。 这就是本文中介绍的多项优化背后的动机。

通过模型并行化扩展LLM

减少模型权重的每设备内存占用的一种方法是将模型分布在多个 GPU 上。 分散内存和计算占用空间可以运行更大的模型或更大批量的输入。 模型并行化是训练或推理模型所必需的,该模型需要比单个设备上可用的内存更多的内存,并使训练时间和推理测量(延迟或吞吐量)适合某些用例。 根据模型权重的划分方式,有多种方法可以并行化模型。

请注意,数据并行性也是一种经常在与下面列出的其他技术相同的上下文中提到的技术。 在这种情况下,模型的权重被复制到多个设备上,并且输入的(全局)批量大小在每个设备上被分成微批次。 它通过处理较大的批次来减少总体执行时间。 然而,这是一种训练时间优化,在推理过程中不太相关。

管道并行性

管道并行性涉及将模型(垂直)分片为块,其中每个块包含在单独设备上执行的层的子集。 下图说明了四路管道并行性,其中模型按顺序分区,并且所有层的四分之一子集在每个设备上执行。 一个设备上的一组操作的输出被传递到下一个设备,后者继续执行后续块。 F_n和B_n分别表示设备n上的前向传播和后向传播。 每个设备上存储模型权重的内存需求被有效地四分。

该方法的主要限制是,由于处理的顺序性质,某些设备或层在等待前一层的输出(激活、梯度)时可能保持空闲状态。 这会导致前向和后向传递效率低下或出现“管道气泡”。 在图 2b 中,白色空白区域是具有幼稚管道并行性的大管道气泡,其中设备闲置且未得到充分利用。

微批处理可以在一定程度上缓解这种情况,如下图所示。 输入的全局批次大小被分成子批次,这些子批次被一一处理,最后累积梯度。 请注意,F_{n,m}B_{n,m} 分别表示设备 n 上具有微批次 m 的前向传播和后向传播。 这种方法缩小了管道气泡的尺寸,但并没有完全消除它们。

张量并行性

张量并行性涉及将模型的各个层(水平)分片为更小的、独立的计算块,这些计算块可以在不同的设备上执行。 注意力块和多层感知器(MLP)层是可以利用张量并行性的变压器的主要组成部分。 在多头注意力块中,每个头或一组头可以分配给不同的设备,以便它们可以独立且并行地计算。

在这里插入图片描述

上图显示了两层 MLP 上双向张量并行的示例,每一层都由一个圆角框表示。 在第一层中,权重矩阵 A 被分为 A_1 和 A_2。 计算 XA_1 和 XA_2 可以在两个不同设备上的输入 X 的同一批次(f 是恒等运算)上独立执行。 这有效地将每个设备上存储权重的内存需求减半。 归约运算 g 组合第二层中的输出。

上图是自注意力层中双向张量并行的示例。 多个注意力头本质上是并行的,并且可以跨设备分割。

序列并行性

张量并行性有局限性,因为它需要将层划分为独立的、可管理的块。 它不适用于 LayerNorm 和 Dropout 等操作,而是在张量并行组中复制。 虽然 LayerNorm 和 Dropout 的计算成本较低,但它们确实需要大量内存来存储(冗余)激活。

如减少大型变压器模型中的激活重新计算所示,这些操作在输入序列中是独立的,并且这些操作可以沿着“序列维度”进行分区,从而提高内存效率。 这称为序列并行性。

模型并行技术不是唯一的,可以结合使用。 它们可以帮助扩展和减少 LLM 的每 GPU 内存占用量,但也有专门针对注意力模块的优化技术。

优化注意力机制

缩放点积注意力 (SDPA) 操作将查询和键值对映射到输出,如 Attention Is All You Need 中所述。

多头注意力
作为 SDPA 的增强,与 Q、K 和 V 矩阵的不同学习投影并行多次执行注意力层,使模型能够共同关注来自不同位置的不同表示子空间的信息。 这些子空间是独立学习的,使模型能够更丰富地理解输入中的不同位置。

如图所示,多个并行注意力操作的输出被串联并线性投影以将它们组合起来。 每个并行注意力层称为“头”,这种方法称为多头注意力(MHA)。

在原始工作中,当使用八个并行注意力头时,每个注意力头在模型的缩减维度(例如 d m o d e l / 8 d_{model}/8 dmodel/8)上运行。 这使得计算成本与单头注意力相似。

多查询注意力

MHA 的推理优化之一称为多查询注意力 (MQA),如 Fast Transformer Decoding 中提出的,在多个注意力头之间共享键和值。 与以前一样,查询向量仍然被投影多次。

虽然 MQA 中完成的计算量与 MHA 相同,但从内存读取的数据量(键、值)只是以前的一小部分。 当受内存带宽限制时,这可以实现更好的计算利用率。 它还减少了内存中 KV 缓存的大小,为更大的批量大小留出了空间。

键值头的减少会带来潜在的准确性下降。 此外,需要在推理时利用这种优化的模型需要在启用 MQA 的情况下进行训练(或至少使用大约 5% 的训练量进行微调)。

分组查询注意力

分组查询注意力 (GQA) 通过将键和值投影到几组查询头,在 MHA 和 MQA 之间取得平衡(下图)。 在每个组中,它的行为类似于多查询注意力。

下图显示多头注意力有多个键值头(左)。 分组查询注意力(中心)的键值头多于一个,但少于查询头的数量,这是内存需求和模型质量之间的平衡。 多查询注意力(右)具有单个键值头,有助于节省内存。

最初使用 MHA 训练的模型可以使用原始训练计算的一小部分通过 GQA 进行“升级训练”。 它们获得接近 MHA 的质量,同时保持接近 MQA 的计算效率。 Llama 2 70B 是利用 GQA 的模型示例。

MQA 和 GQA 等优化通过减少存储的键头和值头的数量来帮助减少 KV 缓存所需的内存。 KV 缓存的管理方式可能仍然效率低下。 与优化注意力模块本身不同,下一节将介绍一种更高效的 KV 缓存管理技术。

Flash attention

优化注意力机制的另一种方法是修改某些计算的顺序,以更好地利用 GPU 的内存层次结构。 神经网络通常用层来描述,大多数实现也以这种方式布局,每次按顺序对输入数据进行一种计算。 这并不总是能带来最佳性能,因为对已经进入内存层次结构的更高、性能更高级别的值进行更多计算可能是有益的。

在实际计算过程中将多个层融合在一起可以最大限度地减少 GPU 需要读取和写入内存的次数,并将需要相同数据的计算分组在一起,即使它们是神经网络中不同层的一部分。

一种非常流行的融合是 FlashAttention,这是一种 I/O 感知精确注意算法,详细信息请参阅 FlashAttention:具有 IO 感知的快速且内存高效的精确注意。 精确注意力意味着它在数学上与标准多头注意力相同(具有可用于多查询和分组查询注意力的变体),因此可以无需修改即可交换到现有的模型架构,甚至是已经训练的模型 。

I/O 感知意味着在将操作融合在一起时,它会考虑前面讨论的一些内存移动成本。 特别是,FlashAttention 使用“平铺”一次性完全计算并写出最终矩阵的一小部分,而不是分步对整个矩阵进行部分计算,写出中间的中间值。

下图显示了 40 GB GPU 上的平铺 FlashAttention 计算模式和内存层次结构。 右图显示了对注意力机制的不同组件进行融合和重新排序所带来的相对加速。

通过分页高效管理 KV 缓存

有时,KV 缓存会静态地“过度配置”,以考虑最大可能的输入(支持的序列长度),因为输入的大小是不可预测的。 例如,如果模型支持的最大序列长度为 2,048,则无论请求中输入和生成的输出的大小如何,都将在内存中保留大小为 2,048 的数据。 该空间可以是连续分配的,并且通常其中大部分未被使用,从而导致内存浪费或碎片。 该保留空间在请求的生命周期内被占用。

受操作系统分页的启发,PagedAttention 算法能够将连续的键和值存储在内存中的不连续空间中。 它将每个请求的 KV 缓存划分为代表固定数量令牌的块,这些块可以不连续存储。

在注意力计算期间,使用记录帐户的块表根据需要获取这些块。 当新的代币产生时,就会进行新的区块分配。 这些块的大小是固定的,消除了因不同请求需要不同分配等挑战而产生的低效率。 这极大地限制了内存浪费,从而实现了更大的批量大小(从而提高了吞吐量)。

模型优化技术

到目前为止,我们已经讨论了 LLM 消耗内存的不同方式、跨多个不同 GPU 分配内存的一些方式,以及优化注意力机制和 KV 缓存。 还有多种模型优化技术可以通过修改模型权重本身来减少每个 GPU 上的内存使用。 GPU 还具有专用硬件来加速这些修改值的运算,从而为模型提供更多加速。

量化

量化是降低模型权重和激活精度的过程。 大多数模型都以 32 或 16 位精度进行训练,其中每个参数和激活元素占用 32 或 16 位内存(单精度浮点)。 然而,大多数深度学习模型可以用每个值八个甚至更少的位来有效表示。

下图显示了一种可能的量化方法之前和之后的值分布。 在这种情况下,舍入会丢失一些精度,并且剪裁会丢失一些动态范围,从而允许以更小的格式表示值。

降低模型的精度可以带来多种好处。 如果模型占用的内存空间较少,则可以在相同数量的硬件上安装更大的模型。 量化还意味着您可以在相同的带宽上传输更多参数,这有助于加速带宽有限的模型。

LLM 有许多不同的量化技术,涉及降低激活、权重或两者的精度。 量化权重要简单得多,因为它们在训练后是固定的。 然而,这可能会留下一些性能问题,因为激活仍然保持在更高的精度。 GPU 没有用于乘以 INT8 和 FP16 数字的专用硬件,因此必须将权重转换回更高精度以进行实际运算。

还可以量化激活、变压器块和网络层的输入,但这也有其自身的挑战。 激活向量通常包含异常值,有效地增加了它们的动态范围,并使以比权重更低的精度表示这些值变得更具挑战性。

一种选择是通过模型传递代表性数据集并选择以比其他激活更高的精度表示某些激活来找出这些异常值可能出现的位置 (LLM.int8())。 另一种选择是借用易于量化的权重的动态范围,并在激活中重用该范围。

稀疏性

与量化类似,事实证明,许多深度学习模型对于修剪或用 0 本身替换某些接近 0 的值具有鲁棒性。 稀疏矩阵是许多元素为 0 的矩阵。这些矩阵可以用压缩形式表示,比完整的稠密矩阵占用的空间更少。

在这里插入图片描述

GPU 尤其具有针对某种结构化稀疏性的硬件加速,其中每四个值中有两个由零表示。 稀疏表示还可以与量化相结合,以实现更大的执行速度。 寻找以稀疏格式表示大型语言模型的最佳方法仍然是一个活跃的研究领域,并为未来提高推理速度提供了一个有希望的方向。

蒸馏

缩小模型大小的另一种方法是通过称为蒸馏的过程将其知识转移到较小的模型。 此过程涉及训练较小的模型(称为学生)来模仿较大模型(教师)的行为。

蒸馏模型的成功例子包括 DistilBERT,它将 BERT 模型压缩了 40%,同时保留了 97% 的语言理解能力,速度提高了 60%。

虽然LLM中的蒸馏是一个活跃的研究领域,但神经网络的一般方法首先在“蒸馏神经网络中的知识”中描述:

  • 学生网络经过训练,可以反映较大教师网络的性能,使用损失函数来测量其输出之间的差异。 该目标还可能包括将学生的输出与真实标签进行匹配的原始损失函数。
  • 匹配的教师输出可以是最后一层(称为 logits)或中间层激活。
    下图显示了知识蒸馏的总体框架。 教师的 logits 是学生使用蒸馏损失进行优化的软目标。 其他蒸馏方法可能会使用其他损失措施来从老师那里“蒸馏”知识。

蒸馏的另一种方法是使用教师合成的数据对LLM学生进行监督培训,这在人工注释稀缺或不可用时特别有用。 一步一步蒸馏! 更进一步,除了作为基本事实的标签之外,还从LLM教师那里提取基本原理。 这些基本原理作为中间推理步骤,以数据有效的方式培训规模较小的LLM。

值得注意的是,当今许多最先进的LLM都拥有限制性许可证,禁止使用他们的成果来培训其他LLM,这使得找到合适的教师模型具有挑战性。

模型服务技术

模型执行经常受到内存带宽的限制,特别是权重中的带宽限制。 即使在应用了前面描述的所有模型优化之后,它仍然很可能受到内存限制。 因此,您希望在加载模型权重时尽可能多地处理它们。 换句话说,尝试并行做事。 可以采取两种方法:

  • 动态批处理涉及同时执行多个不同的请求。
  • 推测推理涉及并行执行序列的多个不同步骤以尝试节省时间。

动态批处理

LLM 具有一些独特的执行特征,这些特征可能导致在实践中难以有效地批量请求。 一个模型可以同时用于多种看起来非常不同的任务。 从聊天机器人中的简单问答响应到文档摘要或长代码块的生成,工作负载是高度动态的,输出大小变化几个数量级。

这种多功能性使得批处理请求并有效地并行执行它们变得具有挑战性——这是服务神经网络的常见优化。 这可能会导致某些请求比其他请求更早完成。

为了管理这些动态负载,许多LLM服务解决方案包括一种称为连续或动态批处理的优化调度技术。 这利用了这样一个事实:LLM的整个文本生成过程可以分解为模型上的多次执行迭代。

通过动态批处理,服务器运行时会立即从批处理中逐出已完成的序列,而不是等待整个批处理完成后再继续处理下一组请求。 然后,它开始执行新请求,而其他请求仍在进行中。 因此,动态批处理可以极大地提高实际用例中 GPU 的整体利用率。

推测性推理

推测推理也称为推测采样、辅助生成或分块并行解码,是并行执行 LLM 的另一种方式。 通常,GPT 风格的大语言模型是自回归模型,逐个生成文本标记。

生成的每个标记都依赖于它之前的所有标记来提供上下文。 这意味着在常规执行中,不可能从同一个序列并行生成多个令牌——必须等待第 n 个令牌生成后才能生成 n+1 个令牌。

下图显示了推测推理的示例,其中草稿模型临时预测并行验证或拒绝的多个未来步骤。 在这种情况下,草稿中的前两个预测令牌被接受,而最后一个在继续生成之前被拒绝并删除。

推测性抽样提供了一种解决方法。 这种方法的基本思想是使用一些“更便宜”的过程来生成几个令牌长的草案延续。 然后,并行执行多个步骤的主要“验证”模型,使用廉价草案作为需要的执行步骤的“推测”上下文。

如果验证模型生成与草稿相同的令牌,那么您就知道接受这些令牌作为输出。 否则,您可以丢弃第一个不匹配标记之后的所有内容,并使用新的草稿重复该过程。

如何生成草稿代币有许多不同的选项,每个选项都有不同的权衡。 您可以训练多个模型,或在单个预训练模型上微调多个头,以预测未来多个步骤的标记。 或者,您可以使用小型模型作为草稿模型,使用更大、功能更强大的模型作为验证器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/346959.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【本科生机器学习】【北京航空航天大学】课题报告:支持向量机(Support Vector Machine, SVM)初步研究【上、原理部分】

说明&#xff1a; &#xff08;1&#xff09;、仅供个人学习使用&#xff1b; &#xff08;2&#xff09;、本科生学术水平有限&#xff0c;故不能保证全无科学性错误&#xff0c;本文仅作为该领域的学习参考。 一、课程总结 1、机器学习&#xff08;Machine Learning, ML&am…

【9.DAC数模转换器】蓝桥杯嵌入式一周拿奖速成系列

系列文章目录 蓝桥杯嵌入式系列文章目录(更多此系列文章可见) DAC数模转换器 系列文章目录一、STM32CUBEMX配置二、项目代码1.main.c --> DACProcess 总结 一、STM32CUBEMX配置 STM32CUBEMX PA4 -> DAC1_OUT1 ; PA5 -> DAC1_OUT2DACProcess 二、项目代码 1.main.c -…

司铭宇老师:销售人员心态激励培训:销售心态调整与情绪压力管理

销售人员心态激励培训&#xff1a;销售心态调整与情绪压力管理&#xff1a;迈向成功的关键要素 导语&#xff1a;在竞争激烈的销售行业中&#xff0c;心态调整与情绪压力管理成为销售人员至关重要的能力。如何在这场博弈中保持良好的心态&#xff0c;有效应对压力&#xff0c;…

C++的关键字,命名空间,缺省参数,函数重载以及原理

文章目录 前言一、C关键字(C98)二、命名空间命名空间介绍命名空间的使用 三、C输入【cin】& 输出【cout】四、缺省参数缺省参数概念缺省参数分类缺省参数的使用小结一下 五、函数重载函数重载介绍函数重载类型 六、C支持函数重载的原理--名字修饰(name Mangling)【重点】 前…

科普栏目|负氧离子水壁炉低能耗的背后的原因与生活优势

科普栏目&#xff5c;负氧离子水壁炉低能耗的背后的原因与生活优势 在当今追求绿色生活和能源高效利用的潮流中&#xff0c;负氧离子水壁炉以其低能耗的特性成为了家庭装饰领域的一颗明珠。究竟是什么原因使得这项技术在能耗方面脱颖而出呢&#xff1f;而低能耗又能为生活带来…

freeswitch智能外呼系统搭建流程

1.获取实时音频数据 media_bug &#xff08;好多mrcp方式也崩溃所以用以下方式&#xff09; 可以参考 方式可以通过socket或者webscoket freeswitch[1.05]用websocket发送mediabug语音流到ASRProxy实现实时质检和坐席辅助 - 知乎 2.webscoket 好多c的库放模块容易崩溃 可以…

适合孩子读书用什么的落地灯?落地护眼灯测评推荐

现代人用眼负荷极大&#xff0c;不仅白天要办公&#xff0c;晚上更是玩手机、刷短视频或是晚间看书阅读&#xff0c;所以营造一个健康的照明环境很重要&#xff01; 如何营造一个健康的照明环境呢&#xff1f;那就不得不提起最近就很火的落地护眼灯。不同于其他台灯灯具&#…

flutter极光推送配置厂商通道(华为)笔记--进行中

一、基础集成按照下面官方文档进行 厂商通道相关参数申请教程 集成厂商 集成指南 官方文档&#xff1a;厂商通道回执配置指南 注意&#xff1a;不同厂商对app上架的要求不同&#xff0c;华为、荣耀 对app上架没有硬性要求 遇到问题 1、引入apply plugin: com.huawei.agconn…

Java玩转《啊哈算法》排序之桶排序

过去心不可得&#xff0c;现在心不可得&#xff0c;未来心不可得 目录在这里 楔子代码地址桶排序代码核心部分优缺点 完整代码演示 升级版核心代码完整代码演示 楔子 大家好&#xff01;本人最近看了下《啊哈算法》&#xff0c;写的确实不错&#xff0c;生动形象又有趣&#x…

k8s的安全机制

k8s是分布式集群管理工具&#xff0c;k8s作用是容器编排 1、安全机制核心&#xff1a;API server。API server作为整个集群内部通信的中介&#xff0c;也是外部控制的入口&#xff0c;所有的安全机制都是围绕api sserver来进行设计的。请求api server资源要满足3个条件&#x…

Garbage First收集器(简称G1)

概述&#xff1a;Garbage First&#xff08;简称G1&#xff09;收集器是垃圾收集器技术发展历史上的里程碑式的成果&#xff0c;它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。 G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵…

开始学习Vue(路由)

一、什么是路由 SPA 指的是一个 web 网站只有唯一的一个 HTML 页面&#xff0c;所有组 件的展示与切换都在这唯一的一个页面内完成。 此时&#xff0c;不同组件之间的切换需要通过前端路由来实现。 结论&#xff1a;在 SPA 项目中&#xff0c;不同功能之间的切换&#xff0…

无人机航迹规划(六):七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)

一、七种算法&#xff08;DBO、LO、SWO、COA、LSO、KOA、GRO&#xff09;简介 1、蜣螂优化算法DBO 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…

LP-AM243x EtherNet/IP 连接施耐德 M241 EIP主站测试

硬件环境&#xff1a;LP-AM243x 开发板 施耐德 Modicon M241 软件环境&#xff1a; INDUSTRIAL-COMMUNICATIONS-SDK-AM243X MCU-PLUS-SDK-AM243X — MCU SDK for AM243x 调试过程&#xff1a; 首先&#xff0c;让AM243x能够运行 Null Boot&#xff0c; Starting NULL Boo…

力扣hot100 除自身以外数组的乘积 前后缀积

Problem: 238. 除自身以外数组的乘积 文章目录 思路前后缀积 思路 前后缀积 ⏰ 时间复杂度: O ( n ) O(n) O(n) &#x1f30e; 空间复杂度: O ( n ) O(n) O(n) class Solution {public int[] productExceptSelf(int[] nums){int n nums.length;int[] p new int[n];//除…

Obsidian - 使用小记(Typora切换过来)

文章目录 关于 Obsidian打开已有的 文件夹将图片改为 Typora 的保存文件夹 关于 Obsidian 官网 https://obsidian.md/github : https://github.com/obsidianmd 个人版免费 一直习惯用 Typora 编写markdown git 记录笔记&#xff0c;多次被安利 Obsidian 后&#xff0c;今天尝…

解决TortoiseGit软件Git Show log时显示Too many files to display的问题

1 问题描述 有时代码提交修改的文件比较多&#xff0c;当查看log时无法显示出来修改的文件列表&#xff0c;如下所示&#xff1a; 2 解决方法 将LogTooManyItemsThreshold尽可能配置得大一些。 三 参考资料 https://gitlab.com/tortoisegit/tortoisegit/-/issues/3878

session反序列化

据陈腾师傅所说&#xff1a; 1.漏洞产生原因&#xff1a;写入格式和读取格式不一样。 下面是三种常见的存储格式&#xff1a; 处理器 对应的存储格式 php键名竖线经过serialize()函数序列化处理的值php_serialize(php>5.54)经…

vue3+Element plus实现登录功能

一、想要实现的效果 二、搭建登录静态 1、实现左边背景和右边登录栏的总体布局布局&#xff1a; <el-row class"content"><!--el-col 列&#xff1a; --><el-col :span"16" :xs"0" class"content-left"></el-c…

司铭宇老师:电话销售心态培训:电话销售被拒绝怎么调整心态

电话销售心态培训&#xff1a;电话销售被拒绝怎么调整心态 在电话销售这个行业中&#xff0c;遭遇拒绝是家常便饭。无论你如何努力&#xff0c;总有那么些时候&#xff0c;客户会对你的产品或服务说“不”。然而&#xff0c;这并不意味着你的努力白费。关键在于如何调整心态&am…
最新文章