【RT-DETR有效改进】轻量化ConvNeXtV2全卷积掩码自编码器网络

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别

👑欢迎大家订阅本专栏,一起学习RT-DETR👑  

 一、本文介绍

本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。我将其替换RT-DETR的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中,替换该网络结构后参数量下降越百分之四十,计算量下降约一半。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

 一、本文介绍

二、ConvNeXt V2架构原理

2.1 ConvNeXt V2的基本原理

2.2 架构创新

三、ConvNeXt V2的核心代码

 四、手把手教你添加ConvNeXt V2机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、ConvNeXt V2的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、ConvNeXt V2架构原理

论文地址: 官方论文地址 

代码地址: 官方代码地址


2.1 ConvNeXt V2的基本原理

ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。这些创新显著提升了纯ConvNet在多个识别基准测试上的性能,如ImageNet分类、COCO检测和ADE20K分割。ConvNeXt V2还包括从效率型的3.7M参数Atto模型到650M参数的Huge模型的多个版本,覆盖了从轻量级到高性能的各种应用需求。

ConvNeXt V2的核心要点包括:

1. 架构创新:融合全卷积掩码自编码器框架和全局响应归一化(GRN)层,优化了原有ConvNeXt架构。
2. 自监督学习:利用自监督学习技术提高了模型的泛化能力和效率。

下图为大家比较了ConvNeXt V1和ConvNeXt V2两个版本中的块设计

在ConvNeXt V2块中,新增加了全局响应归一化(GRN)层,并且由于GRN层的引入,原先的LayerScale层变得多余,因此在V2版本中被去除。这些变化旨在优化网络的特征表示和提高模型的学习效率。


2.2 架构创新

ConvNeXt V2 架构创新主要体现在以下几个方面:

1. 全卷积掩码自动编码器(FCMAE):采用全卷积方法处理图像,特别适合处理带有掩码的图像数据。

2. 全局响应归一化(GRN)层:在卷积块中引入GRN层,增强了模型处理信息时的通道间竞争,提高特征表达的质量。

3. 去除LayerScale层:因为GRN层的加入,原来的LayerScale层变得多余,在V2架构中被移除,简化了模型结构。

这张图展示了ConvNeXt V2中提出的全卷积掩码自动编码器(FCMAE)框架

在这张图中,ConvNeXt V2的FCMAE框架采用了稀疏卷积技术作为其编码器的核心,这是为了有效地处理输入图像中的非掩蔽(可见)像素。编码器结构层次化,有助于捕获不同层级的特征信息。解码器相对简单,使用轻量级的ConvNeXt块,目的是重构图像,但仅限于目标(即被掩蔽的)区域。这种不对称设计允许模型在预训练时专注于关键区域,这对于图像的自监督学习特别有效。损失函数的计算仅在掩蔽的区域进行,进一步强化了模型对于目标区域的学习和重构能力。


三、ConvNeXt V2的核心代码

使用方式看章节四

# Copyright (c) Meta Platforms, Inc. and affiliates.

# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath

__all__ = ['convnextv2_atto', 'convnextv2_femto', 'convnext_pico', 'convnextv2_nano', 'convnextv2_tiny', 'convnextv2_base', 'convnextv2_large', 'convnextv2_huge']

class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x

class Block(nn.Module):
    """ ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self, in_chans=3, num_classes=1000,
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
                 drop_path_rate=0., head_init_scale=1.
                 ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        results = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            results.append(x)
        return results  # global average pooling, (N, C, H, W) -> (N, C)


def convnextv2_atto(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
    return model


def convnextv2_femto(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
    return model


def convnext_pico(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
    return model


def convnextv2_nano(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)
    return model


def convnextv2_tiny(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    return model


def convnextv2_base(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    return model


def convnextv2_large(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    return model


def convnextv2_huge(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)
    return model



if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = convnextv2_atto()

    out = model(image)
    print(len(out))


 四、手把手教你添加ConvNeXt V2机制

下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

修改过程中大家一定要仔细


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、ConvNeXt V2的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, convnextv2_atto, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/350700.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode:二分搜索树层次遍历

题目&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例&#xff1a; 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,…

研发日记,Matlab/Simulink避坑指南(五)——CAN解包 DLC Bug

文章目录 前言 背景介绍 问题描述 分析排查 解决方案 总结 前言 见《研发日记&#xff0c;Matlab/Simulink避坑指南&#xff08;一&#xff09;——Data Store Memory模块执行时序Bug》 见《研发日记&#xff0c;Matlab/Simulink避坑指南(二)——非对称数据溢出Bug》 见《…

springboot 项目,返回的实体类里面字段是null ,现在想要为空应该是““,空字符串,而不是null

目录 1 问题2 实现 1 问题 返回给前端的数据&#xff0c;如果数据库的字段没有数据&#xff0c;给返回的是null 要变成这个&#xff0c;全局都变成这样 2 实现 springboot返回给页面的json数据中&#xff0c;如果有数据为null&#xff0c;则返回空字符串。 springboot默认使…

同为科技(TOWE)自动控制循环定时插座

随着科技的发展&#xff0c;智能化家居已成为我们生活的重要组成部分。作为国内领先的智能家居品牌&#xff0c;同为科技&#xff08;TOWE&#xff09;推出的自动控制循环定时插座&#xff0c;无疑将科技与生活完美地结合在一起。 1.外观设计 同为科技&#xff08;TOWE&#x…

Spring第二天

今日目标 能够掌握注解开发定义Bean对象 能够掌握纯注解开发模式 能够配置注解开发依赖注入 能够配置注解开发管理第三方Bean 能够配置注解开发为第三方Bean注入资源 能够使用Spring整合Mybatis 能够使用Spring整合Junit 一、第三方资源配置管理 说明&#xff1a;以管理DataSo…

保险箱(第十四届蓝桥杯省赛PythonB组)

小蓝有一个保险箱&#xff0c;保险箱上共有 n 位数字。 小蓝可以任意调整保险箱上的每个数字&#xff0c;每一次操作可以将其中一位增加 1 或减少 1。 当某位原本为 9 或 0 时可能会向前&#xff08;左边&#xff09;进位/退位&#xff0c;当最高位&#xff08;左边第一位&am…

AM5-DB低压备自投装置在河北冠益荣信科技公司洞庭变电站工程中的应用——安科瑞赵嘉敏

摘 要&#xff1a;随着电力需求的不断增加&#xff0c;电力系统供电可靠性要求越来越高&#xff0c;许多供电系统已具备两回或多回供电线路。备用电源自动投入装置可以有效提高供电的可靠性&#xff0c;该类装置能够在工作电源因故障断开后&#xff0c;自动且迅速地将备用电源投…

Lisflood

3.耦合LisFlood模型 C解决方案在\LisFlood\LISFLOOD-FP-trunk 执行在LisFlood\LISFLOOD-FP-trunk\out\build\msvc-x64-Debug 3.1输入文件 文献&#xff1a;基于&#xff33;&#xff37;&#xff2d;&#xff2d;和&#xff2c;&#xff29;&#xff33;&#xff26;&#…

vue day06

1、路由模块封装 2、声明式导航 实现导航高亮效果 直接通过这两个类名对相应标签设置样式 点击a链接进入my页面时&#xff0c;a链接 我的音乐高亮&#xff0c;同时my下的a、b页面中的 我的音乐也有router-link-active类&#xff0c;但没有精确匹配的类&#xff08;只有my页…

HTTP连接池在Java中的应用:轻松应对网络拥堵

网络拥堵是现代生活中无法避免的问题&#xff0c;尤其是在我们这个“点点点”时代&#xff0c;网页加载速度直接影响到我们的心情。此时&#xff0c;我们需要一位“救世主”——HTTP连接池。今天&#xff0c;就让我们一起探讨一下&#xff0c;这位“救世主”如何在Java中大显神…

12个强大的 JavaScript 动画库,可帮助你提升用户体验

文章目录 12个强大的 JavaScript 动画库&#xff0c;可帮助你提升用户体验1.Anime.js2.Lottie3. Velocity4.Rough Notation5.Popmotion6. Vivus7.GSAP&#xff1a;Green Stocking Animation Platform8. Three.js9.ScrollReveal10.Barba.js11.Mo.js12.Typed.js总结 12个强大的 J…

【Python】01快速上手爬虫案例一:搞定豆瓣读书

文章目录 前言一、VSCodePython环境搭建二、爬虫案例一1、爬取第一页数据2、爬取所有页数据3、格式化html数据4、导出excel文件 前言 实战是最好的老师&#xff0c;直接案例操作&#xff0c;快速上手。 案例一&#xff0c;爬取数据&#xff0c;最终效果图&#xff1a; 一、VS…

降维(Dimensionality Reduction)

1.动机一&#xff1a;数据可视化 将数据可视化&#xff0c;我们便能寻找到一个更好的解决方案&#xff0c;降维可以帮助我们。 假使我们有有关于许多不同国家的数据&#xff0c;每一个特征向量都有 50 个特征&#xff08;如 GDP&#xff0c;人均 GDP&#xff0c;平均寿命等&a…

python深度学习—第6章(波斯美女)

第6章 深度学习用于文本和序列 6.1 处理文本数据 与其他所有神经网络一样&#xff0c;深度学习模型不会接收原始文本作为输入&#xff0c;它只能处理数值张量。 文本向量化&#xff08;vectorize&#xff09;是指将文本转换为数值张量的过程。它有多种实现方法。 将文本分割…

力扣80、删除有序数组中的重复项Ⅱ(中等)

1 题目描述 图1 题目描述 2 题目解读 对于有序数组nums&#xff0c;要求在不使用额外数组空间的条件下&#xff0c;删除数组nums中重复出现的元素&#xff0c;使得nums中出现次数超过两次的元素只出现两次。返回删除后数组的新长度。 3 解法一&#xff1a;双指针 双指针法可以…

【代码随想录-数组】二分查找

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

学习笔记-李沐动手学深度学习(四)(12-13,权重衰退、L2正则化、Dropout)

总结 【trick】过拟合及正则化项参数的理解 实际数据都有噪音&#xff0c;一般有噪音后&#xff0c;模型实际学习到的权重w就会比 理论上w的最优解&#xff08;即没有噪音时&#xff09;大。&#xff08;QA中讲的&#xff09; 【好问题】 &#xff08;1&#xff09;不使用正…

Jupyter Notebook安装以及简单使用教程

Jupyter Notebook安装以及简单使用教程 本文章将&#xff0c;简要的讲解在已经拥有Python环境下如何进行Jupyter Notebook的安装。并且简短的介绍Jupyter Notebook的使用方法。 Jupyter Notebook是什么 Jupyter Notebook是一个基于Web的交互式计算环境&#xff0c;它支持多种…

101.乐理基础-五线谱-五线谱的构造、谱号是什么

内容参考于&#xff1a;三分钟音乐社 上一个内容&#xff1a;100.乐理基础-五线谱-是否需要学习五线谱-CSDN博客 首先简谱的构造&#xff0c;如下图&#xff1a;真正影响音乐的是左上角的三部分&#xff0c;调号、拍号、情绪与速度&#xff0c;如图1 然后不管用什么谱&#xf…

代码随想录第十七天| ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

文章目录 110.平衡二叉树思路-递归&#xff1a;代码&#xff1a; 思路二-迭代 257. 二叉树的所有路径思路一&#xff1a;普通递归 思路二&#xff1a;递归优化思路三&#xff1a;迭代法&#xff08;没细看&#xff09; 404.左叶子之和思路-递归 110.平衡二叉树 思路-递归&#…
最新文章