基于机器学习的地震预测(Earthquake Prediction with Machine Learning)

基于机器学习的地震预测(Earthquake Prediction with Machine Learning)

  • 一、地震是什么
  • 二、数据组
  • 三、使用的工具和库
  • 四、预测要求
  • 五、机器学习进行地震检测的步骤
  • 六、总结

一、地震是什么

地震几乎是每个人都听说过或经历过的事情。地震基本上是一种自然发生的事件,当地壳中突然释放能量导致地面振动或晃动时,就会发生地震。在地球表面之下,有很大一部分被称为构造板块,它们构成了地球的外层。这些部分经常移动并相互作用。由于这种相互作用和运动,这些板块可能会因摩擦而锁定,这反过来又会导致压力增加。

随着时间的推移,随着压力的不断积累,在某一点上,它达到了一个点,沿着板块边界的岩石破裂,释放出大量储存的能量。这种释放出来的能量以地震波的形式在地壳中传播,从而导致地面震动和颤抖。地震的强度和强度都是用里氏震级来测量的。

二、数据组

地震数据集包含2001年1月1日至2023年1月1日在世界各地发生的各种地震的详细信息。它是与地震事件相关的结构化数据。这些数据是由地震研究所、研究机构等组织收集和维护的。这个数据集可以用来建立和训练各种机器学习模型,这些模型可以预测地震,这将有助于拯救人们的生命,并采取必要的措施来减少造成的损害。
数据集可以使用此此链接下载: dataset

该数据集总共包含782行和19个属性(列)。属性的简要描述如下:

标题: 指给地震起的名称/标题

震级: 用来描述地震的强度或强度

日期: 地震发生的日期和时间

cdi: cdi表示给定地震记录的最高烈度

mmi: mmi代表修正Mercalli烈度,表示地震的最大仪器报告烈度

alert: 此属性指的是与特定地震相关的可能威胁或风险的警报级别

tsunami: 表示本次地震是否引起海啸

震级: 用来描述地震的严重程度。地震的重要性与这个数字成正比

net: 表示采集数据的源的id。

nst: 此属性用于描述用于确定地震位置的地震台站的总数。

dmin: 表示离震中最近的监测站的水平距离。

缺口: 用于确定地震的水平位置。数值越小,表明确定地震水平位置的可靠性越高

magType: 这是指用于计算地震震级的算法类型

深度: 表示地震开始破裂的深度

纬度,经度: 用坐标系统表示地震发生的位置

location: 该国家的具体位置

大陆: 指发生地震的大陆

country: 表示受地震影响的国家

三、使用的工具和库

该项目使用了以下Python库:

● Numpy
● Matplotlib
● Seaborn
● Pandas
● Scikit-learn

四、预测要求

先决条件是:

NumPy:

  • 理解数组和矩阵运算。

  • 能够有效地进行数值计算。

Pandas:

  • 熟练处理和分析结构化数据。

  • 了解数据框架和系列。

  • 能够处理和预处理地震数据,包括清理、过滤和转换数据。

Matplotlib:

  • 掌握基本的绘图技术,包括线形图、散点图和直方图。

  • 理解子图,以便在单个图中创建多个图。

  • 熟悉高级绘图类型,如热图、等高线图和地理可视化。

Seaborn:

  • 了解统计数据可视化技术。

  • Seaborn功能的知识,创建视觉吸引力和信息丰富的情节。

Scikit-learn:

  • 熟悉机器学习概念,如监督学习和无监督学习。

  • 了解模型选择、培训和评估程序。

五、机器学习进行地震检测的步骤

  1. 导入所需的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

  1. 导入所需库后,可以读取和显示数据集。可以使用**read_csv()**函数读取数据集,并且可以使用head()函数显示数据集的前5行。
data = pd.read_csv('earthquake_data.csv')
data.head()

输出:

输出显示数据集的前5行。
在这里插入图片描述
3. 一旦数据被读取,就可以对数据进行一些基本的探索性数据分析,以获得对数据的一些见解,并对数据有更多的了解。

data.info()

输出:

info()函数用于获取有关数据集中存在的属性、数据集中的行数、每个属性中缺失值的数量、每个属性的数据类型等信息。在这里插入图片描述
4. 除了info()函数,description()函数还可用于获取数据集的统计信息。

data.describe().transpose()

输出:

description()函数为属于数据集的所有属性提供最小值,最大值,平均值,标准差等统计见解。

在这里插入图片描述
5. isnull()函数可用于查找数据集中是否存在任何空值,聚合函数sum()用于获取数据集中每个属性中空值的总数。

data.isnull().sum()

输出:

输出图像显示数据集所有属性中空值的总数。列alert、continent和country分别有367,576和298个空值。
在这里插入图片描述
6. 在获得关于数据的一些基本见解之后,我们可以继续清理数据集。清理数据集将有助于将其转换为更好的形式,以便以后用于训练各种机器学习模型。

features = ["magnitude", "depth", "cdi", "mmi", "sig"]
target = "alert"
data = data[features + [target]]
data.head()

输出:

在上面给出的代码中,我们创建了一个名为features的列表,其中包含名为震级,深度,cdi, mmi, sig。我们将使用机器学习模型来预测警报属性。

警报属性存储在一个名为target的变量中。在下一步中,我们将创建一个数据框架,并只选择功能列表中提到的列/属性以及目标变量。
新数据框的前10行可以使用head()函数显示。在这里插入图片描述
在这里插入图片描述

  1. 警报属性中所有值的计数可以使用饼图显示。
plt.figure(figsize = (6,12))
plt.pie(x = data[target].value_counts(), labels = ['blue','orange','green','red'], autopct = '%.2f')
plt.title("Distribution of values in alert column")
plt.legend()
plt.show()

输出:

饼状图显示警报列中出现的各种值的分布。各种值出现的百分比为:蓝色= 78.31%,橙色= 13.49%,绿色= 5.30%,红色= 2.89%。
在这里插入图片描述
8. 前面我们已经看到数据集中的一些属性包含某些空值。由于空值不多,因此可以使用dropna()函数从数据集中删除这些值。

data.dropna(inplace=True)
data.info()

输出:

使用dropna()函数删除空值,在下一行中,使用info()函数获取有关数据集的一些基本信息。
在这里插入图片描述
9. 在下一步中,我们将对数据进行预处理。在此步骤中,将更改某些属性的数据类型。代码中将属性cdi、mmi、sig从int64类型转换为int8类型,将属性depth从float64类型转换为int16类型。属性警报也从类型对象转换为类别。这些转换主要是为了内存优化。转换数据类型的其他原因是,使用整数而不是浮点数以更好的方式表示数据。

data = data.astype({'cdi': 'int8', 'mmi': 'int8', 'sig': 'int8', 'depth': 'int16', 'alert': 'category'})
data.info()

输出:一旦转换了属性的数据类型,就可以使用info()函数来显示属性关于属性及其数据类型的信息。
在这里插入图片描述
10. 现在,让我们检查目标(警报)列中出现的各种值的计数。我们可以使用条形图来实现这个目的。

data[target].value_counts().plot(kind='bar', title='Count (target)', color=['green', 'yellow', 'orange', 'red']);

输出:输出图像是一个条形图,显示alert属性中所有值的计数。的值是绿色,黄色,橙色,红色。大多数值是绿色的,其次是黄色、橙色和红色。在这里插入图片描述
11. 在前面的步骤中,可以看到alert属性中最常出现的值是绿色的价值。这表明alert属性是不平衡的,即alert属性中的值没有相同的出现次数。为了克服alert属性不平衡的问题,我们可以执行over-sampling过采样也有助于模型表现良好,因为它消除了被偏向于出现次数最高的值的可能性。

X = data[features]
y = data[target]

X = X.loc[:,~X.columns.duplicated()]

sm = SMOTE(random_state=42)
X_res, y_res= sm.fit_resample(X, y,)

y_res.value_counts().plot(kind='bar', title='Count (target)', color=['green', 'orange', 'red', 'yellow']);

在前两行中,变量X被初始化为名为data的数据框。这是一个功能列表先前指定的属性。变量y是用数据框架的目标(警报)列初始化的。在下一行中,代码从X值中删除所有重复的列。只有那些列不会重复,并将存储在X中。完成此操作后,我们将创建SMOTE算法的一个新实例。SMOTE代表合成少数过采样技术。这是一种常用的解决问题的技术机器学习中的类不平衡。创建SMOTE算法的实例后,可以使用该实例应用SMOTE算法对变量X和y进行重采样,应用SMOTE算法得到的值为分别存储在x_res和y_res变量中。完成后,我们可以使用条形图绘制y_res变量中的值。

输出:从柱状图中可以明显看出,y_res变量中存在的所有值具有相同数量的出现了。在这里插入图片描述
12. 接下来,我们可以使用train_test_split()将数据分割为训练数据和测试数据函数。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.2, random_state=42)

注意,在上面的代码中,我们使用变量X_res和y_res作为独立变量和因变量分别为。我们使用X_res和y_res,因为它没有问题alert属性不平衡。原始数据帧在告警中面临着不平衡的问题属性。

  1. 在我们开始在数据集上实现模型之前,我们必须使数据符合标准这将最终帮助机器学习模型以更好的方式理解数据。这可以使用StandardScaler()函数来完成。
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

  1. 我们可以绘制出数据集中存在的各种值之间的相关性。相关矩阵表示数据集中存在的各种变量之间的关系,以及每个变量如何受到其他变量的影响。也可以使用下面的代码绘制它。
plt.figure(figsize = (10,6))
sns.heatmap(data.corr(), annot=True, fmt=".2f")
plt.plot()

输出:
相关矩阵表示数据集中存在的各种值之间的相关系数。在这里插入图片描述
15. 下一步,我们可以在训练数据集上训练各种机器学习模型这些模型的性能可以使用测试数据集进行评估。

models = []
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(random_state=42)
dt.fit(X_train, y_train)

可以使用predict()方法对模型进行预测。模型的性能可以使用指标accuracy_score、classification_report、confusion_matrix。

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
dt_pred = dt.predict(X_test)
print(accuracy_score(dt_pred,y_test)*100)
print(classification_report(dt_pred, y_test))
sns.heatmap(confusion_matrix(dt_pred, y_test), annot = True)
plt.plot()

输出:出现在混淆矩阵对角线上的值(54,64,60,51)表示被模型正确分类的数据点的数量。从准确性来看得分,显然决策树分类器的准确率为88.07%。在这里插入图片描述
16. 我们要实现的下一个模型是KNN。

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

该模型的预测方式与之前的预测方式相似

knn_pred = knn.predict(X_test)
print(accuracy_score(knn_pred, y_test)*100)
print(classification_report(knn_pred, y_test))
sns.heatmap(confusion_matrix(knn_pred, y_test), annot = True)
plt.plot()

输出:
混淆矩阵和准确度分数可以像前面一样显示。从输出可以明显看出KNN的准确率为89.23%。在这里插入图片描述
在这里插入图片描述
17. 在使用KNN算法之后,我们可以在数据集上使用随机森林分类器。

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state=42)
rf.fit(X_train, y_train)

来自随机森林分类器的预测可以使用predict()方法进行。混淆矩阵和准确性评分可以像前面一样显示。

rf_pred = rf.predict(X_test)
print(accuracy_score(rf_pred, y_test)*100)
print(classification_report(rf_pred, y_test))
sns.heatmap(confusion_matrix(rf_pred, y_test), annot = True)
plt.plot()

输出:可以看出随机森林分类器的准确率为91.15%。
在这里插入图片描述
在这里插入图片描述
18. 我们将实现的最后一个模型是梯度增强分类器。

from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier(random_state=42)
gb.fit(X_train, y_train)

混淆矩阵和精度可以像前面那样显示。

gb_pred = gb.predict(X_test)
print(accuracy_score(gb_pred, y_test)*100)
print(classification_report(gb_pred, y_test))
sns.heatmap(confusion_matrix(gb_pred, y_test), annot = True)
plt.plot()

输出:梯度增强算法的准确率为92.69%。
在这里插入图片描述
在这里插入图片描述

六、总结

总之,机器学习技术在地震预测方面显示出了很好的结果。通过分析各种数据源,如地震记录、地理空间信息等,机器学习模型可以学习模式、趋势和关系,这些可以帮助识别潜在的地震发生。

虽然机器学习模型可以帮助预测地震,但重要的是要注意,这是一个正在进行的研究领域,实现可靠和准确的预测仍然是一项复杂的任务。领域专家和机器学习工程师之间的合作努力对于推进该领域和开发可以帮助早期检测地震的强大模型至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/351944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android源码设计模式解析与实战第2版笔记(五)

第七章 时势造英雄 – 策略模式 策略模式的定义 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化。 策略模式的使用场景 针对同一类型问题的多种处理方式,仅仅…

YOLOv8优化策略:轻量化改进 | RepGhost,通过重参数化实现硬件高效的Ghost模块

🚀🚀🚀本文改进:RepGhost,通过重参数化实现硬件高效的Ghost模块,性能优于GhostNet、MobileNetV3等,在移动设备上具有更少的参数和可比的延迟。 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1.原…

污水处理行业:环保远程控制网关S275引领行业变革

近年来,随着城镇工业的不断发展,污水处理厂在城市中扮演着重要角色。作为国家新兴战略产业之一的水处理行业也是蓬勃发展。如何节省成本、保证水质的稳定性和安全性,从而达到节能、减排、节水的目的是工厂考虑的重中之重。 案例 客户是一家…

雨云美国二区云服务器评测

雨云美国二区云服务器评测 官网直接百度搜索雨云就行 我买的时候比较便宜,三个月3.4元,1C1G对于我这种小网站来说够用了 本期测评服务器配置 CPU:1核 内存:1G 硬盘:Linux系统20G,win系统30G 流量&…

【数据结构与算法】之字符串系列-20240127

这里写目录标题 一、面试题 08.07. 无重复字符串的排列组合二、面试题 10.02. 变位词组三、面试题 17.11. 单词距离四、LCR 014. 字符串的排列五、LCR 020. 回文子串六、1528. 重新排列字符串 一、面试题 08.07. 无重复字符串的排列组合 中等 无重复字符串的排列组合。编写一种…

Deepin基本环境查看(四)【硬盘/分区、文件系统、硬连接/软连接】

Deepin基本环境查看 - 目录Deepin基本环境查看(一)【基本信息】Deepin基本环境查看(二)【内存】Deepin基本环境查看(三)【网络信息】Deepin基本环境查看(四)【硬盘/分区、文件系统、…

Python接口自动化框架设计到开发,赶紧用起来!

1.如何设计一个接口自动化测试框架 根据接口地址、接口类型、请求数据、预期结果来进行设计,对于需要登录后才能进行操作的接口那么则需要进行header cookie等数据的传递,自动化测试的难点就是数据依赖。 2.python操作excel获得内容 首先python操作exce…

Unity架构师进阶:红点系统的架构与设计

面试的时候经常被问道如何来设计一个红点系统,本文将详细地介绍如何设计一个红点系统,有哪些接口,并完整地给出实现。 红点系统的需求分析 首先我们来分析一下红点系统的设计需求: 红点系统严格意义上来说不属于框架,而是游戏逻辑&#xff…

某工业级剪纸包装机辐射整改实例

摘要 某一客户工业级剪纸包装机器出口欧洲需要做CE认证,其中一项需要符合EMC Directive 2004/108/EC里面的EN 61000-6-4:2007,其中就需要符合标准中的辐射发射限值要求。但是,在CE-EMC认证过程中,测试辐射发射出现不合格现象。关键…

设计模式_访问者模式_Visitor

案例引入 要求 测评系统需求:将观众分为男人和女人,对歌手进行测评,当看完某个歌手表演后,得到他们对该歌手不同的评价(比如 成功、失败 等) 传统方案 Man和Woman里面都有“成功”、“失败”的方法 【分析】 如果系统比较小&…

国民技术N32G430C8开发笔记一-新建IAR工程

一、创建IAR工程 1、新建工程,保存到project文件夹。 2、添加SDK到工程。 根据原厂SDK的文件结构在IAR新建相应分组,把各个文件夹的文件加载进去,其中startup文件选择IAR平台的startup_n32g430_EWARM.s。 3、添加头文件路径&#xff0…

Python编程 从入门到实践(项目二:数据可视化)

本篇为实践项目二:数据可视化。 配合文章python编程入门学习,代码附文末。 项目二:数据可视化 1.生成数据1.1 安装Matplotlib1.2 绘制简单的折线图1.2.1 修改标签文字和线条粗细1.2.2 校正图形1.2.3 使用内置样式1.2.4 使用scatter()绘制散点…

Asp.Net Core 获取应用程序相关目录

在ASP.NET Core中,可以通过以下三种方式获取应用程序所在目录: 1、使用AppContext.BaseDirectory属性: string appDirectory AppContext.BaseDirectory; 例如:D:\后端项目\testCore\test.WebApi\bin\Debug\net6.0\ 2、使用…

IDEA 安装阿里Java编码规范插件

1.File>Settings 2.安装之后重启 开发过程中如果有不符合规范的地方,会自动出现提示

侯捷《C++标准11-14》笔记

P2: 模板编程中的… 模板编程时&#xff0c;“…”表示可以接受任意数量和类型的参数&#xff0c;具有极大的灵活性。函数调用时&#xff0c;参数个数不定会被分解成一包一包的参数传入。从而通过递归把不定个数的参数一一分解。 #include <iostream> using namespace …

vit细粒度图像分类(二)SwinFC 学习笔记

1.摘要&#xff1a; 针对细粒度图像类间差异小、类内差异大等问题&#xff0c;提出了一种基于Swin及多尺度特征融合的模型&#xff08;SwinFC&#xff09;。 基准骨干网络采用具有多阶段层级架构设计的Swin Transformer模型作为全新视觉特征提取器&#xff0c;从中获取局部和全…

【CentOS】Linux 文件权限与权限修改

目录 1、Linux 中的文件属性 2、如何修改文件属性与权限 3、目录权限与文件权限的区别 4、Linux 中的文件扩展名 用户与用户组是Linux文件权限的重要组成部分。 首先&#xff0c;一定要明确用户与用户组的概念&#xff1a; Linux 一般将文件可读写的身份分为三个类别&#…

Redis 击穿、穿透、雪崩产生原因解决思路

大家都知道&#xff0c;计算机的瓶颈之一就是IO&#xff0c;为了解决内存与磁盘速度不匹配的问题&#xff0c;产生了缓存&#xff0c;将一些热点数据放在内存中&#xff0c;随用随取&#xff0c;降低连接到数据库的请求链接,避免数据库挂掉。需要注意的是&#xff0c;无论是击穿…

Qt中Widget样式表实现圆弧边框

第一步 第二步 第三步 第四步 //插入border-radius: 10px; border: 2px solid #000; 效果图

文本分类识别系统Python+卷积神经网络算法+TensorFlow+Django网页界面

一、介绍 文本分类系统&#xff0c;使用Python作为主要开发语言&#xff0c;通过选取的中文文本数据集&#xff08;“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”&#xff09;&#xff0c;基于Te…
最新文章