PySpark(三)RDD持久化、共享变量、Spark内核制度,Spark Shuffle

目录

RDD持久化

RDD 的数据是过程数据

 RDD 缓存

RDD CheckPoint

共享变量

广播变量

累加器

Spark 内核调度

DAG

DAG 的宽窄依赖和阶段划分 

内存迭代计算 

Spark是怎么做内存计算的? DAG的作用?Stage阶段划分的作用?

Spark为什么比MapReduce快?

Spark并行度 

Spark Shuffle

Hash Shuffle

Sort Shuffle


RDD持久化

RDD 的数据是过程数据

RDD之间进行相互迭代计算(Transformation的转换),当执行开启后,新RDD的生成,代表老RDD的消失

RDD的数据是过程数据,只在处理的过程中存在,一旦处理完成,就不见了
这个特性可以最大化的利用资源,老旧RDD没用了 就从内存中清理,给后续的计算腾出内存空间.

例如下面这个例子,生成rdd4的时候, rdd3已经被销毁了,然后下面rdd5需要调用rdd3的时候,只能从rdd->rdd2->rdd3再重新生成一次rdd3

    rdd = sc.parallelize([('a',1),('a',3),('a',6),('b',1),('b',2),('c',1)],3)
    rdd2 = rdd.map(lambda x:(x[0],x[1]+2))
    rdd3 = rdd2.distinct()
    rdd4 = rdd3.filter(lambda x:x[1]>5)
    print(rdd4.collect())
    # [('a', 8)]

    rdd5 = rdd3.glom()
    print(rdd5.collect())
    # [[('a', 5), ('a', 8)], [('a', 3), ('b', 4)], [('b', 3), ('c', 3)]]

 RDD 缓存

RDD的缓存技术:Spark提供了缓存AP1,可以让我们通过调用AP1,将指定的RDD数据保留在内存或者硬盘上缓存的API

最开始要引入:from pyspark.storagelevel import StorageLevel

缓存技术可以将过程RDD数据,持久化保存到内存或者硬盘上
但是,这个保存在设定上是认为不安全的,缓存的数据在设计上是 认为 有丢失风险的
所以,缓存有一个特点就是: 其保留RDD之间的血缘(依赖)关系
一旦缓存丢失可以基于血缘关系的记录重新计算这个RDD的数据

缓存如何丢失:
在内存中的缓存是不安全的,比如断电计算任务内存不足把缓存清理给计算让路

硬盘中因为硬盘损坏也是可能丢失的 

RDD缓存采用的是分散存储,也就是每一个executor都会将其处理的部分RDD存放在自己的内存或硬盘中 

RDD CheckPoint

CheckPoint技术也是将RDD的数据保存起来,但是它仅支持硬盘存储
并且:它被设计认为是安全的,不保留 血缘关系

checkPoint存储RDD数据,是集中收集各个分区数据进行存储而缓存是分散存储,也就是说先将executor中的数据收集起来(比如收集到hdfs),然后再进行存储

缓存和CheckPoint的对比

  • CheckPoint不管分区数量多少,风险是一样的,缓存分区越多,风险越高
  • CheckPoint支持写入HDFS,缓存不行HDFS是高可靠存储,checkPoint被认为是安全的.
  • checkPoint不支持内存缓存可以缓存如果写内存性能比checkPoint要好一些
  • CheckPoint因为设计认为是安全的,所以不保留血缘关系,而缓存因为设计上认为不安全,所以保留
    sc.setCheckpointDir("hdfs://node1:8020/checkpoint")
    #设置存储位置
    rdd = sc.parallelize([('a',1),('a',3),('a',6),('b',1),('b',2),('c',1)],3)
    rdd2 = rdd.map(lambda x:(x[0],x[1]+2))
    rdd3 = rdd2.distinct()
    rdd3.checkpoint()

共享变量

广播变量

假如有下面一个场景,需要根据stu_ifo将score_ifo中的数字替换为名字,注意这里是本地数据stu_ifo与RDD数据联合处理

    stu_ifo = [(1,'lmx'),(2,'lby'),(3,'lxl')]

    score_ifo = sc.parallelize([
        (1,'math',100),
        (2,'english',87),
        (1,'english',80),
        (3,'chinese',98),
        (2, 'chinese', 68),
        (1, 'chinese', 88)]
    )
    def func(data):
        for i in stu_ifo:
            if data[0] == i[0]:
                return (i[1],data[1],data[2])

    get = score_ifo.map(func)
    print(get.collect())

一般情况下, 如果一个executor里面有多个分区的情况,那么每个分区都要向driver申请一份本地数据,然而由于executor内部的数据是共享的,这样就会多申请了一份stu_ifo

只需要将stu_ifo标记为广播变量,就可以解决这个问题。只会向一个executor发送一次数据

只需要在之前声明:

stu_if_breadcast = sc.broadcast(stu_ifo)

然后使用的时候:

stu_if_breadcast.value

使用这个方法,可以节省IO次数以及executor内存

 上述代码变为:

    stu_ifo = [(1,'lmx'),(2,'lby'),(3,'lxl')]
    stu_if_breadcast = sc.broadcast(stu_ifo)
    score_ifo = sc.parallelize([
        (1,'math',100),
        (2,'english',87),
        (1,'english',80),
        (3,'chinese',98),
        (2, 'chinese', 68),
        (1, 'chinese', 88)]
    )
    def func(data):
        for i in stu_if_breadcast.value:
            if data[0] == i[0]:
                return (i[1],data[1],data[2])

    get = score_ifo.map(func)
    print(get.collect())

累加器

针对下面这种场景,我希望每map一次,我的num加1:

    rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10],2)
    def countt(data):
        global num
        num+=1
        print(num)
        return data

    print(rdd.map(countt).collect())
    print(num)
    # 1
    # 2
    # 3
    # 4
    # 5
    # 1
    # 2
    # 3
    # 4
    # 5
    # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    # 0

观察结果,由于分区的情况,在每个executor内num都加到了5,但是最后的num却还是0

因为加1操作只会发生在 executor 中,而最后打印的是driver中的num,所以还是0

这里可以使用spark的累加器变量:

    num = sc.accumulator(0) #累加器
    rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10],2)
    def countt(data):
        global num
        num+=1
        return data

    rdd.map(countt).collect()
    print(num)
    # 10

Spark 内核调度

DAG

DAG:有向无环图

在spark中,每一个 action算子都会将前面的一串rdd依赖链条执行起来,这些执行链条其实就是DAG

有多少个action算子,就有多少个执行链条(JOB),就有多少个DAG

        如果一个代码中,写了n个Action,那么这个代码运行起来产生n个JOB,每个JOB有自己的DAG个代码运行起来,在Spark中称之为: Application

spark中数据都是分区的,所以实际上每一个job都是带有分区关系的DAG

DAG 的宽窄依赖和阶段划分 

RDD的前后关系分为 宽依赖和窄依赖

窄依赖:父RDD的一个分区,全部 将数据发给子RDD的一个分区

宽依赖:父RDD的一个分区将数据发给子RDD的多个分区

宽依赖还有一个别名: shuffle

对于Spark来说会根据DAG,按照宽依赖划分不同的DAG阶段
划分依据:从后向前,遇到宽依赖 就划分出一个阶段称之为stage 

 可以看到,在阶段内都是 窄依赖,这有助于构建内存迭代管道

内存迭代计算 

        在执行上图的程序时,最优的方式肯定是task1,2,3,4,5,6都在独立且单独的线程中完成(还存在另外一种情况,比如b1->p1,p1->下一个p1是不同的线程,那可能会在线程中存在网络IO调用,影响性能)

        task1 中rdd1rdd2 rdd3 的选代计算,都是由一个task(线程完成),这一阶段的这一条线,是纯内存计算.如上图,task1 task2 task3,就形成了三个并行的内存计算管道 

Spark默认受到全局并行度的限制,除了个别算子有特殊分区情况,大部分的算子,都会遵循全局并行度的要求,来规划自己的分区数如果全局并行度是3,其实大部分算子分区都是3
注意:Spark一般推荐只设置全局并行度,不要再算子上设置并行度除了一些排序算子外,计算算子就让他默认开分区就可以了.

Spark是怎么做内存计算的? DAG的作用?Stage阶段划分的作用?

  • Spark会产生DAG图
  • DAG图会基于分区和宽窄依赖关系划分阶段
  • 一个阶段的内部都是 窄依赖,窄依赖内,如果形成前后1:1的分区对应关系就可以产生许多内存选代计算的管道
  • 这些内存迭代计算的管道,就是一个个具体的执行Task
  • 一个Task是一个具体的线程,任务跑在一个线程内,就是走内存计算了 

Spark为什么比MapReduce快?

  • Spark的算子丰富,MapReduce算子匮乏(Map和Reduce),MapReduce这个编程模型,很难在一套MR中处理复杂的任务.很多的复杂任务,是需要写多个MapReduce进行串联多个MR串联通过磁盘交互数据
  • Spark可以执行内存迭代,算子之间形成DAG 基于依赖划分阶段后,在阶段内形成内存选代管道.但是MapReduce的Map和Reduce之间的交互依旧是通过硬盘来交互的

Spark并行度 

Spark的并行: 在同一时间内, 有多少个task在同时运行
并行度:并行能力的设置
比如设置并行度6,其实就是要6个task并行在跑在有了6个task并行的前提下,rdd的分区就被规划成6个分区了

优先级从高到低:
代码中
客户端提交参数中
配置文件中
默认(1,但是不会全部以1来跑,多数时候基于读取文件的分片数量来作为默认并行度)

 集群如何规划并行度?

结论:设置为CPU总核心的2~10倍

        为什么要设置最少2倍?
        CPU的一个核心同一时间只能干一件事情所以,在100个核心的情况下,设置100个并行,就能让CPU 100%出力

        这种设置下如果task的压力不均衡,某个task先执行完了就导致某个CPU核心空闲

        所以,我们将Task(并行)分配的数量变多,比如800个并行,同一时间只有100个在运行,700个在等待.但是可以确保某个task运行完了.后续有task补上,不让cpu闲下来,最大程度利用集群的资源

Spark Shuffle

Spark在DAG调度阶段会将一个Job划分为多个Stage,上游Stage做map工作,下游Stage做reduce工作,其本质上 还是MapReduce计算框架。Shuffle是连接map和reduce之间的桥梁,它将map的输出对应到reduce输入中,涉及 到序列化反序列化、跨节点网络IO以及磁盘读写IO等。

 Spark的Shuffle分为Write和Read两个阶段,分属于两个不同的Stage,前者是Parent Stage的最后一步,后者是 Child Stage的第一步。

在Spark的中,负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。ShuffleManager随着 Spark的发展有两种实现的方式,分别为HashShuffleManager和SortShuffleManager,因此spark的Shuffle有Hash ShuffleSort Shuffle两种。 

Hash Shuffle

未经优化的hashShuffleManager: 

        HashShuffle是根据task的计算结果的key值的hashcode%ReduceTask来决定放入哪一个区分,这样保证相同的数据 一定放入一个分区,根据下游的task决定生成几个文件,先生成缓冲区文件在写入磁盘文件,再将block文件进行合并。

        一个task内部会根据hash分类,然后将不同类的数据放入不同的磁盘文件,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的,也就是下图所产生的的block file

 优化的hashShuffleManager:

        在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概 念,每个shuffleFileGroup会对应一批磁盘文件,每一个Group磁盘文件的数量与下游stage的task数量是相同的。

        其实说到底就是其在executor内部就会进行数据的汇合操作,大大减少了磁盘文件的生成

Sort Shuffle

(1)该模式下,数据会先写入一个内存数据结构中(默认5M),此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内 存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。

(2)接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话 ,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。

(3)排序 在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。 (4)溢写 排序过后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数 据的形式分批写入磁盘文件。

(5)merge 一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之 前所有的临时磁盘文件都进行合并成1个磁盘文件,这就是merge过程。 由于一个task就只对应一个磁盘文件,也就意味着该task为Reduce端的stage的task准备的数据都在这一个文件中, 因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。


说到底最大的区别就是,一个task只会生成一个磁盘文件和一个索引文件,大大降低了磁盘占有和网络IO数量

Sort Shuffle bypass机制

bypass运行机制的触发条件如下:

1)shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold=200参数的值。

2)不是map combine聚合的shuffle算子(比如reduceByKey有map combie)(这种算子不需要排序)

        此时task会为每个reduce端的task都创建一个临时磁盘文件,并将数据按key进行hash,然后根据key的hash值, 将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的 。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

        该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件, 只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的 HashShuffleManager来说,shuffle read的性能会更好


而该机制与普通SortShuffleManager运行机制的不同在于:

第一,磁盘写机制不同;

第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作, 也就节省掉了这部分的性能开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/373283.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Akamai 如何揪出微软 RPC 服务中的漏洞

近日,Akamai研究人员在微软Windows RPC服务中发现了两个重要漏洞:严重程度分值为4.3的CVE-2022-38034,以及分值为8.8的CVE-2022-38045。这些漏洞可以利用设计上的瑕疵,通过缓存机制绕过MS-RPC安全回调。我们已经确认,所…

Golang 学习(一)基础知识

面向对象 Golang 也支持面向对象编程(OOP),但是和传统的面向对象编程有区别,并不是纯粹的面向对象语言。 Golang 没有类(class),Go 语言的结构体(struct)和其它编程语言的类(class)有同等的地位,Golang 是基于 struct 来实现 OOP…

爬虫工作量由小到大的思维转变---<第四十四章 Scrapyd 用gerapy管理多台机器爬虫>

前言: 之前讲过关于如何在gerapy中部署本地爬虫, 爬虫工作量由小到大的思维转变---<第三十四章 Scrapy 的部署scrapydGerapy>_gerapy如何登录-CSDN博客 爬虫工作量由小到大的思维转变---<第三十五章 Scrapy 的scrapydGerapy 部署爬虫项目&…

云计算市场分析

目录 一、云计算市场概述 1.1 概述 二、国外云计算厂商 2.1 亚马逊AWS 2.2 微软AzureAzure 2.3 Apple iCloud 三、国内云计算厂商 3.1 阿里云 3.2 腾讯云 3.3 华为云 3.4 百度智能云 一、云计算市场概述 1.1 概述 云计算从出现以来,其发展就非常迅速。以…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之QRCode组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之QRCode组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、QRCode组件 用于显示单个二维码的组件。 子组件 无。 接口 QRCode(value: st…

深入实战:ElasticSearch的Rest API与迭代器模式在高效查询中的应用

在我们公司,大多数Java开发工程师在项目中都有使用Elasticsearch的经验。通常,他们会通过引入第三方工具包或使用Elasticsearch Client等方式来进行数据查询。然而,当涉及到基于Elasticsearch Rest API的/_sql?formatjson接口时,…

【机器学习与自然语言处理】预训练 Pre-Training 各种经典方法的概念汇总

【NLP概念合集:一】预训练 Pre-Training,微调 Fine-Tuning 及其方法的概念区别 前言请看此正文预训练 Pre-Training无监督学习 unsupervised learning概念:标签PCA 主成分分析(Principal Component Analysis)降维算法L…

基于SSM的协同过滤技术的网上书城(有报告)。Javaee项目。ssm项目。

演示视频: 基于SSM的协同过滤技术的网上书城(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Sp…

ElasticSearch查询语句用法

查询用法包括:match、match_phrase、multi_match、query_string、term 1.match 1.1 不同字段权重 如果需要为不同字段设置不同权重,可以考虑使用bool查询的should子句来组合多个match查询,并为每个match查询设置不同的权重 {"query&…

【python】绘制爱心图案

以下是一个简单的Python代码示例,它使用turtle模块绘制一个代表爱和情人节的心形图案。 首先,请确保计算机上安装了Python和turtle模块。然后,将以下代码保存到一个.py文件中,运行它就可以看到爱心图案的绘制过程。 import turt…

vue21 vue.set()方法

实例 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>Vue监测数据改变的原理</title><!-- 引入Vue --><script type"text/javascript" src"../js/vue.js"></script></h…

酷开系统 | 拓展内容营销边界,酷开科技大屏价值全面升维

丰富的内容是智能大屏吸引消费者的关键。随着智能大屏各类垂直应用的增多&#xff0c;和长、短视频等多元内容的加入&#xff0c;使消费者的使用需求进一步激发和释放&#xff0c;这些流量的加入&#xff0c;也使大屏成为了营销的天然宝藏。酷开科技一直致力于OTT大屏营销&…

时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于CNN-LST…

1Maven分模块设计与开发

目录 1.1 介绍 1.2 实践 1.2.1模块进行拆分 1.3 总结 首先&#xff1a;Maven 是一款构建和管理 Java 项目的工具 1.1 介绍 所谓分模块设计&#xff0c;顾名思义指的就是我们在设计一个 Java 项目的时候&#xff0c;将一个 Java 项目拆分成多个模块进行开发。 1). 未分模…

C++之字符串

C风格字符串 字符串处理在程序中应用广泛&#xff0c;C风格字符串是以\0&#xff08;空字符&#xff09;来结尾的字符数组。对字符串进行操作的C函数定义在头文件<string.h>或中。常用的库函数如下&#xff1a; //字符检查函数(非修改式操作) size_t strlen( const char …

五、Redis之发布订阅及事务管理

5.1 发布订阅 5.1.1 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。下图展示了频道 channel1 &#xff0c;以及订阅这个频道的三个客户端 —— client1 、client2 …

软件产品:软件平台与软件流程相依存

在工作之余经常有感而发&#xff0c;作一些方法论之类的思考。 1、研发的使命是什么&#xff1f; 研发的使命通常围绕以下几个核心要点&#xff1a;技术创新与领先&#xff1a;研发部门的首要任务是推动技术创新和科技领先&#xff0c;通过不断探索、研究新的技术、材料、工艺…

Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积

内容列表 一&#xff0c;前提 二&#xff0c;卷积层原理 1.概念 2.作用 3. 卷积过程 三&#xff0c;nn.conv1d 1&#xff0c;函数定义&#xff1a; 2, 参数说明: 3,代码: 4, 分析计算过程 四&#xff0c;nn.conv2d 1, 函数定义 2, 参数&#xff1a; 3, 代码 4, 分析计算过程 …

QML用ListView实现带section的GridView

QML自带的GridView只能定义delegate&#xff0c;没有section&#xff0c;类似手机相册带时间分组标签的样式就没法做。最简单的方式就是组合ListViewGridView&#xff0c;或者ListViewFlow&#xff0c;但是嵌套View时&#xff0c;子级View一般是完全展开的&#xff0c;只显示该…

「递归算法」:二叉树剪枝

一、题目 给你二叉树的根结点 root &#xff0c;此外树的每个结点的值要么是 0 &#xff0c;要么是 1 。 返回移除了所有不包含 1 的子树的原二叉树。 节点 node 的子树为 node 本身加上所有 node 的后代。 示例 1&#xff1a; 输入&#xff1a;root [1,null,0,0,1] 输出&…
最新文章