动态内存管理(2)

文章目录

    • 4. 几个经典的笔试题
      • 4.1 题目1
      • 4.2 题目2
      • 4.3 题目3
      • 4.4 题目4
    • 5. C/C++程序的内存开辟
    • 6. 动态通讯录
    • 7. 柔性数组
      • 7.1 柔性数组的特点
      • 7.2 柔性数组的使用
      • 7.3 柔性数组的优势

4. 几个经典的笔试题

4.1 题目1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void GetMemory(char* p)
{
	p = (char*)malloc(100);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}

int main()
{
	Test();

	return 0;
}

在调用GetMemory函数时,传的是str的值,p是str的一份临时拷贝,p里面放的也是NULL,接着,把malloc开辟空间的地址给了p,但是str还是NULL,那么strcpy中的str就是NULL,就会对空指针进行解引用操作;同时,动态申请的内存空间没有释放,存在内存泄漏的问题(而且出了GetMemory函数之后想释放也释放不了,因为p所在的那块内存空间已经被销毁了,已经还给操作系统了)。

注:

  1. 传变量本身就是传值,传变量的地址才叫传址
  2. printf(“hello world”)并不是把"hello world"这个字符串传给了printf这个函数,而是传的’h’的地址,所以printf(str)这个写法没有问题

可以这样修改:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void GetMemory(char** p)
{
	*p = (char*)malloc(100);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(&str);
	strcpy(str, "hello world");
	printf(str);
	//释放
	free(str);
	str = NULL;
}

int main()
{
	Test();

	return 0;
}

4.2 题目2

#include <stdio.h>
#include <stdlib.h>

char* GetMemory(void)
{
	char p[] = "hello world";

	return p;
}

void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

int main()
{
	Test();

	return 0;
}

这里的str确实存了数组首元素的地址,但是p这个数组出了GetMemory这个函数就被销毁了,str变成了野指针,它指向的空间里的内容变成了随机值,所以打印出来就是随机值(这里也相当于是非法访问了)

可以这样修改:

#include <stdio.h>
#include <stdlib.h>

char* GetMemory(void)
{
	static char p[] = "hello world";
	//char* p = "hello world";//"hello world"是常量字符串,放在代码段,程序结束才会销毁;p接收的是'h'的地址,所以str里放的是'h'的地址,出了作用域p被销毁了并不影响str找到"hello world"
	//以上两种写法都可以

	return p;
}

void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

int main()
{
	Test();

	return 0;
}

总结: 这属于返回栈空间地址的问题

我们可以简化一下这个问题:

#include <stdio.h>

int* test()
{
	int a = 10;

	return &a;
}

int main()
{
	int* p = test();
	printf("%d\n", *p);

	return 0;
}

这里的p就变成了野指针,但是有可能还能打印出10,这是因为可能这块空间还没有被用掉

如果改成这样:

#include <stdio.h>

int* test()
{
	int a = 10;

	return &a;
}

int main()
{
	int* p = test();
	printf("*p=");
	printf("%d\n", *p);

	return 0;
}

这样就打印不出来10了,这里涉及到函数栈帧:
返回栈空间地址的问题
当只有第二个printf语句时,我在test函数返回后迅速先通过*p来找到10,然后开辟了printf的函数栈帧来打印它,所以还有可能打印出10;但是我再前面再加了一个printf后,第一个printf函数开辟的空间覆盖了原来test函数开辟的空间,所以第二个printf就打印不出10了

4.3 题目3

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

int main()
{
	Test();

	return 0;
}

问题在于忘记释放

应该这样修改:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
	free(str);
	str = NULL;
}

int main()
{
	Test();

	return 0;
}

4.4 题目4

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
 
	if (str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}

int main()
{
	Test();

	return 0;
}

问题在于free完后没有把str置为空指针,导致str变为野指针,非法访问内存了

应该这样修改:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
	str = NULL;

	if (str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}

int main()
{
	Test();

	return 0;
}

5. C/C++程序的内存开辟

C、C++中程序内存区域划分
注: 数据段也就是静态区

从图中我们也可以得知,一个全局变量和一个局部变量的地址其实离得是比较远的:

#include <stdio.h>

int d = 200;

int main()
{
	int a = 10;
	int b = 20;

	static int c = 100;

	printf("&a = %p\n", &a);//&a = 00CFFB6C
	printf("&b = %p\n", &b);//&b = 00CFFB60
	printf("&c = %p\n", &c);//&c = 0076A038
	printf("&d = %p\n", &d);//&d = 0076A034

	return 0;
}

C/C++程序内存分配的几个区域:

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等
  2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS(operate system)回收 ,分配方式类似于链表。
  3. 数据段(静态区)(static)存放全局变量、静态数据,程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

有了这幅图,我们就可以更好的理解在初识C语言中讲的static关键字修饰局部变量的例子了:

实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁,但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁,所以生命周期变长。

6. 动态通讯录

我们对之前写的通讯里进行一个改造:

  1. 通讯录的空间不是固定的,大小是可以调整的
  2. 默认能放3个人的信息,如果不够,就每次增加2个人的信息

首先,我们要改变一下通讯录这个结构体:

//contact.h

typedef struct Contact
{
	PeoInfo* data;//指向了存放数据的空间
	int sz;//记录的是当前放的有效元素的个数
	int capacity;//通讯录当前的最大容量
}Contact;

接着是初始化通讯录:

//contact.c

void InitContact(Contact* pc)
{
	assert(pc);

	pc->data = (PeoInfo*)malloc(DEFAULT_SZ * sizeof(PeoInfo));//DEFAULT_SZ是我定义的默认大小:3

	if (NULL == pc->data)
	{
		perror("InitContact");
		return;
	}

	pc->sz = 0;
	pc->capacity = DEFAULT_SZ;
}

然后是增加联系人:

//contact.c

int CheckCapacity(Contact* pc)
{
	if (pc->sz == pc->capacity)
	{
		PeoInfo* ptr = (PeoInfo*)realloc(pc->data, (pc->capacity + INC_SZ) * sizeof(PeoInfo));
		
		if (NULL == ptr)
		{
			perror("CheckCapacity");
			return 0;
		}
		else
		{
			pc->data = ptr;
			pc->capacity += INC_SZ;
			printf("增容成功\n");
			return 1;
		}
	}

	return 1;
}

void AddContact(Contact* pc)
{
	assert(pc);

	if (0 == CheckCapacity(pc))
	{
		return;
	}

	printf("请输入名字:>");
	scanf("%s", pc->data[pc->sz].name);
	printf("请输入年龄:>");
	scanf("%d", &(pc->data[pc->sz].age));
	printf("请输入性别:>");
	scanf("%s", pc->data[pc->sz].sex);
	printf("请输入电话:>");
	scanf("%s", pc->data[pc->sz].tele);
	printf("请输入地址:>");
	scanf("%s", pc->data[pc->sz].addr);

	pc->sz++;
	printf("成功增加联系人\n");
}

最后用完通讯录要对它进行释放:

//contact.c

void DestroyContact(Contact* pc)
{
	free(pc->data);
	pc->data = NULL;
	pc->capacity = 0;
	pc->sz = 0;
}

其他通讯录的功能不需要改动,完整代码如下:

//contact.h

#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#define MAX 100
#define MAX_NAME 20
#define MAX_SEX 5
#define MAX_TELE 12
#define MAX_ADDR 30

#define DEFAULT_SZ 3
#define INC_SZ 2

enum OPTION
{
	EXIT,//0
	ADD,
	DEL,
	SEARCH,
	MODIFY,
	SHOW,
	SORT
};

enum SELECT
{
	NAME = 1,
	AGE
};

//类型的声明

typedef struct PeoInfo
{
	char name[MAX_NAME];
	int age;
	char sex[MAX_SEX];
	char tele[MAX_TELE];
	char addr[MAX_ADDR];
}PeoInfo;



//通讯录

//动态版本
typedef struct Contact
{
	PeoInfo* data;//指向了存放数据的空间
	int sz;//记录的是当前放的有效元素的个数
	int capacity;//通讯录当前的最大容量
}Contact;


//函数声明

//初始化通讯录
void InitContact(Contact* pc);

//增加联系人
void AddContact(Contact* pc);

//显示所有联系人的信息
void ShowContact(const Contact* pc);

//删除指定联系人
void DelContact(Contact* pc);

//查找指定联系人
void SearchContact(const Contact* pc);

//修改指定联系人
void ModifyContact(Contact* pc);

//排序功能
void SortContact(Contact* pc);

void DestroyContact(Contact* pc);
//contact.c

#include "contact.h"

//动态版本
void InitContact(Contact* pc)
{
	assert(pc);

	pc->data = (PeoInfo*)malloc(DEFAULT_SZ * sizeof(PeoInfo));

	if (NULL == pc->data)
	{
		perror("InitContact");
		return;
	}

	pc->sz = 0;
	pc->capacity = DEFAULT_SZ;
}

//动态版本
int CheckCapacity(Contact* pc)
{
	if (pc->sz == pc->capacity)
	{
		PeoInfo* ptr = (PeoInfo*)realloc(pc->data, (pc->capacity + INC_SZ) * sizeof(PeoInfo));
		
		if (NULL == ptr)
		{
			perror("CheckCapacity");
			return 0;
		}
		else
		{
			pc->data = ptr;
			pc->capacity += INC_SZ;
			printf("增容成功\n");
			return 1;
		}
	}

	return 1;
}

void AddContact(Contact* pc)
{
	assert(pc);

	if (0 == CheckCapacity(pc))
	{
		return;
	}

	printf("请输入名字:>");
	scanf("%s", pc->data[pc->sz].name);
	printf("请输入年龄:>");
	scanf("%d", &(pc->data[pc->sz].age));
	printf("请输入性别:>");
	scanf("%s", pc->data[pc->sz].sex);
	printf("请输入电话:>");
	scanf("%s", pc->data[pc->sz].tele);
	printf("请输入地址:>");
	scanf("%s", pc->data[pc->sz].addr);

	pc->sz++;
	printf("成功增加联系人\n");
}


void ShowContact(const Contact* pc)
{
	assert(pc);
	
	int i = 0;
	//打印列标题
	printf("%-20s\t%-4s\t%-5s\t%-12s\t%-30s\n", "名字", "年龄", "性别", "电话", "地址");
	//打印数据
	for (i = 0; i < pc->sz; i++)
	{
		printf("%-20s\t%-4d\t%-5s\t%-12s\t%-30s\n",
			pc->data[i].name,
			pc->data[i].age,
			pc->data[i].sex,
			pc->data[i].tele,
			pc->data[i].addr);
	}

}

static int FindByName(const Contact* pc, char name[])
{
	int i = 0;

	for (i = 0; i < pc->sz; i++)
	{
		if (0 == strcmp(pc->data[i].name, name))
		{
			return i;//找到了
		}
	}

	return -1;//找不到
}

void DelContact(Contact* pc)
{
	assert(pc);

	if (0 == pc->sz)
	{
		printf("通讯录为空,无法删除\n");
		return;
	}

	char name[MAX_NAME] = { 0 };

	//删除
	printf("请输入要删除的人的名字:>");
	scanf("%s", name);

	//找到要删除的人
	int del = FindByName(pc, name);

	if (-1 == del)
	{
		printf("要删除的人不存在\n");
		return;
	}

	int i = 0;

	//删除坐标为del的联系人
	for (i = del; i < pc->sz - 1; i++)
	{
		pc->data[i] = pc->data[i + 1];
	}

	pc->sz--;
	printf("成功删除联系人\n");
}

void SearchContact(const Contact* pc)
{
	assert(pc);

	char name[MAX_NAME] = { 0 };
	printf("请输入要查找人的名字:>");
	scanf("%s", name);
	int pos = FindByName(pc, name);

	if (-1 == pos)
	{
		printf("要查找的人不存在\n");
	}
	else
	{
		//打印列标题
		printf("%-20s\t%-4s\t%-5s\t%-12s\t%-30s\n", "名字", "年龄", "性别", "电话", "地址");
		//打印数据
		printf("%-20s\t%-4d\t%-5s\t%-12s\t%-30s\n",
				pc->data[pos].name,
				pc->data[pos].age,
				pc->data[pos].sex,
				pc->data[pos].tele,
				pc->data[pos].addr);
	}
}

void ModifyContact(Contact* pc)
{
	assert(pc);

	char name[MAX_NAME] = { 0 };
	printf("请输入要修改人的名字:>");
	scanf("%s", name);
	int pos = FindByName(pc, name);

	if (-1 == pos)
	{
		printf("要修改的人不存在\n");
	}
	else
	{
		printf("请输入名字:>");
		scanf("%s", pc->data[pos].name);
		printf("请输入年龄:>");
		scanf("%d", &(pc->data[pos].age));
		printf("请输入性别:>");
		scanf("%s", pc->data[pos].sex);
		printf("请输入电话:>");
		scanf("%s", pc->data[pos].tele);
		printf("请输入地址:>");
		scanf("%s", pc->data[pos].addr);
		printf("修改成功\n");
	}
}


void select()
{
	printf("********************************\n");
	printf("***** 1. name    2. age    *****\n");
	printf("********************************\n");
}

int cmp_by_name(const void* p1, const void* p2)
{
	return strcmp(((PeoInfo*)p1)->name, ((PeoInfo*)p2)->name);
}

int cmp_by_age(const void* p1, const void* p2)
{
	return ((PeoInfo*)p1)->age - ((PeoInfo*)p2)->age;
}

void SortContact(Contact* pc)
{
	assert(pc);

	if (0 == pc->sz)
	{
		printf("通讯录为空,无法排序\n");
		return;
	}

	int input = 0;

	do
	{
		select();
		printf("请选择按何种方式进行排序:>");
		scanf("%d", &input);

		switch (input)
		{
		case NAME:
			qsort(pc->data, pc->sz, sizeof(pc->data[0]), cmp_by_name);
			printf("排序成功\n");
			break;
		case AGE:
			qsort(pc->data, pc->sz, sizeof(pc->data[0]), cmp_by_age);
			printf("排序成功\n");
			break;
		default:
			printf("选择错误,重新选择\n");
			break;
		}

	} while (input != NAME && input != AGE);
}


void DestroyContact(Contact* pc)
{
	free(pc->data);
	pc->data = NULL;
	pc->capacity = 0;
	pc->sz = 0;
}
//test.c

#include "contact.h"

void menu()
{
	printf("********************************\n");
	printf("***** 1. add     2. del    *****\n");
	printf("***** 3. search  4. modify *****\n");
	printf("***** 5. show    6. sort   *****\n");
	printf("***** 0. exit              *****\n");
	printf("********************************\n");
}

void test()
{
	int input = 0;
	//首先得有通讯录
	Contact con;
	InitContact(&con);

	do
	{
		menu();
		printf("请选择:>");
		scanf("%d", &input);

		switch (input)
		{
		case ADD:
			AddContact(&con);
			break;
		case DEL:
			DelContact(&con);
			break;
		case SEARCH:
			SearchContact(&con);
			break;
		case MODIFY:
			ModifyContact(&con);
			break;
		case SHOW:
			ShowContact(&con);
			break;
		case SORT:
			//排序
			//按照名字排序?
			//按照年龄排序?
			SortContact(&con);
			break;
		case EXIT:
			DestroyContact(&con);
			printf("退出通讯录\n");
			break;
		default:
			printf("选择错误,重新选择\n");
			break;
		}

	} while (input);
}

int main()
{
	test();

	return 0;
}

7. 柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

7.1 柔性数组的特点

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

7.2 柔性数组的使用

#include <stdio.h>
#include <stdlib.h>

struct S
{
	int n;
	//int arr[0];//这两种写法都可以
	int arr[];//柔性数组
};

int main()
{
	//printf("%d\n", sizeof(struct S));//4
	struct S* ps = (struct S*)malloc(sizeof(struct S) + 40);

	if (NULL == ps)
	{
		perror("malloc");
		return 1;
	}

	ps->n = 100;
	int i = 0;

	for (i = 0; i < 10; i++)
	{
		ps->arr[i] = i + 1;
	}

	//空间不够,需要增容
	struct S* ptr = (struct S*)realloc(ps, sizeof(struct S) + 60);

	if (NULL == ptr)
	{
		perror("realloc");
		return 1;
	}

	ps->n = 15;

	for (i = 0; i < 15; i++)
	{
		printf("%d\n", ps->arr[i]);
	}

	//释放
	free(ps);
	ps = NULL;

	return 0;
}

7.3 柔性数组的优势

我们不使用柔性数组也可以实现上述功能:

#include <stdio.h>
#include <stdlib.h>

struct S
{
	int n;
	int* arr;
};

int main()
{
	struct S* ps = (struct S*)malloc(sizeof(struct S));

	if (NULL == ps)
	{
		perror("malloc->ps");
		return 1;
	}

	ps->n = 100;
	ps->arr = (int*)malloc(40);

	if (NULL == ps->arr)
	{
		perror("malloc->arr");
		return 1;
	}

	int i = 0;

	for (i = 0; i < 10; i++)
	{
		ps->arr[i] = i + 1;//1 2 3 4 5 6 7 8 9 10
	}

	//调整
	int* ptr = (int*)realloc(ps->arr, 60);

	if (ptr != NULL)
	{
		ps->arr = ptr;
	}
	else
	{
		perror("realloc");
		return 1;
	}

	//打印
	for (i = 0; i < 15; i++)
	{
		printf("%d\n", ps->arr[i]);
	}

	//释放
	free(ps->arr);
	ps->arr = NULL;

	free(ps);
	ps = NULL;

	return 0;
}

那么柔性数组的优势是什么呢?

  1. 使用柔性数组只用了一次malloc就解决问题了,方便内存释放。

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

  1. 如果你在内存空间中多次开辟空间,内存碎片(内存和内存之间留下的缝)就越多,这些内存碎片就可能不能被很好地利用,内存的利用率就越低;同时,访问速度也会变低。

连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/376167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 | SpringBoot大型旅游网站 旅行后台管理系统(附源码)

1&#xff0c; 概述 1.1 项目背景 随着互联网技术的快速发展和普及&#xff0c;旅游行业逐渐转向线上&#xff0c;越来越多的游客选择在线预订旅游产品。传统的线下旅行社模式已不能满足市场需求&#xff0c;因此&#xff0c;开发一个高效、便捷的旅游网站成为行业的迫切需求…

速度规划:s形曲线应用(变速 停车)opencv c++显示(3)

理论篇 先看该篇&#xff0c;这里沿用了里面的变量。 应用推导篇 分为变速和停车两部分&#xff08;字迹潦草&#xff0c;可结合代码看&#xff09; 代码篇 变速函数入口&#xff1a; velocityPlanner vp; vp.SetParameters(0, 1);停车函数入口&#xff1a; ParkingVelo…

2.6:冒泡、简选、直插、快排,递归,宏

1.冒泡排序、简单选择排序、直接插入排序、快速排序(升序) 程序代码&#xff1a; 1 #include<stdio.h>2 #include<string.h>3 #include<stdlib.h>4 void Bubble(int arr[],int len);5 void simple_sort(int arr[],int len);6 void insert_sort(int arr[],in…

ARP毒化

ARP毒化虽然是一种比较老的渗透测试技术&#xff0c;但是在信息搜集方面能发挥出 很不错的效果。通过ARP毒化技术分析并提取内网流量中的敏感信息&#xff0c;往往会有 许多意外的“ 收获”。 9.2.1 工作原理 ARP&#xff08;地址解析协议&#xff09;是数据链路层的协议&am…

【C中二三事】指针专题

指针专题 在 C 中&#xff0c;指针概念一直处于不佳而或缺的地位&#xff0c;本文就指针这一主题&#xff0c;记录下C语言在指针编程中的小细节。 文章目录 指针专题场景一解 场景二解 场景三解 场景四解 场景五解 场景六解 场景七解 场景一 ​ ∗ p *p ∗p 自增的是 p p p…

工业互联网IoT物联网设备网络接入认证安全最佳实践

制造业数字化转型过程中&#xff0c;产线物联网&#xff08;IoT&#xff09;设备、工控机的引入极大提高了生产效率的同时&#xff0c;也埋下了不容忽视的安全隐患。尤其制造业已成为勒索软件攻击的重灾区&#xff0c;利用物联网设备漏洞进行恶意攻击的事件不胜枚举&#xff0c…

java---查找算法(二分查找,插值查找,斐波那契[黄金分割查找] )-----详解 (ᕑᗢᓫ∗)˒

目录 一. 二分查找&#xff08;递归&#xff09;&#xff1a; 代码详解&#xff1a; 运行结果&#xff1a; 二分查找优化&#xff1a; 优化代码&#xff1a; 运行结果&#xff08;返回对应查找数字的下标集合&#xff09;&#xff1a; ​编辑 二分查找&#xff08;非递归…

Nacos1.X源码解读(待完善)

下载源码 1. 克隆git地址到本地 # 下载nacos源码 git clone https://github.com/alibaba/nacos.git 2. 切换分支到1.4.7, maven编译(3.5.1) 3. 找到启动类com.alibaba.nacos.Nacos 4. 启动VM参数设置单机模式, RUN 启动类 -Dnacos.standalonetrue 5. 启动本地服务注册到本…

SpringFramework实战指南(六)

SpringFramework实战指南(六) 4.4 基于 配置类 方式管理 Bean4.4.1 完全注解开发理解4.4.2 实验一:配置类和扫描注解4.4.3 实验二:@Bean定义组件4.4.4 实验三:高级特性:@Bean注解细节4.4.5 实验四:高级特性:@Import扩展4.4.6 实验五:基于注解+配置类方式整合三层架构组…

浅谈——开源软件的影响力

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 ✨特色专栏&#xff1a…

二叉树OJ题(1)

目录 1.相同的树 2.对称二叉树 3.翻转二叉树 4.另一颗树的子树 题目代码思路整体分析&注意事项易错点画图递归分析 树根左子树右子树 分支的思想 多情况考虑 1.相同的树 100. 相同的树 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/same-…

数据结构.树的线索化兄弟表示法哈夫曼树

一、线索化 二、树的逻辑结构 三、哈夫曼树

JSDoc 注释规范

JSDoc 注释 在 前端项目中&#xff0c;注释格式包含了一些特殊标记&#xff0c;如 param、returns 等&#xff0c;这种注释通常是用来标记函数或方法的参数和返回值的数据类型和描述。 这种注释格式通常被称为 JSDoc 注释。在实际开发中&#xff0c;这样的注释可以被一些工具解…

购物车商品数量为0判断是否删除

当编辑商品的数量为1&#xff0c;再减的话&#xff0c;我们搞个模态提示&#xff0c;让用户决定是否要删除这个商品&#xff1f; //商品数量的编辑功能handleItemNumEdit(e){const {operation,id}e.currentTarget.dataset;console.log(operation,id);let {cart}this.data;let …

STM32 硬件随机数发生器(RNG)

STM32 硬件随机数发生器 文章目录 STM32 硬件随机数发生器前言第1章 随机数发生器简介1.1 RNG主要特性1.2.RNG应用 第2章 RNG原理框图第3章 RNG相关寄存器3.1 RNG 控制寄存器 (RNG_CR)3.2 RNG 状态寄存器 (RNG_SR)3.3 RNG 数据寄存器 (RNG_DR) 第3章 RNG代码部分第4章 STM32F1 …

多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测

多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测 目录 多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于CNN-LSSVM卷积神经…

有趣的CSS - 多彩变化的按钮

目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲染效果 整体效果 这个按钮效果主要使用 :hover 、:active 伪选择器以及 animation 、transition 属性来让背景色循环快速移动形成视觉效果。 核心代码部分&#xff0c;简要说明了写法思路&…

生存类游戏《幻兽帕鲁》从部署服务器到开始体验全过程

SteamDB数据显示&#xff0c;《幻兽帕鲁》上线24小时内&#xff0c;在线人数峰值便突破200万&#xff0c;跻身Steam历史排行榜第二位。随着热度进一步发酵&#xff0c;《幻兽帕鲁》官方发布推文称&#xff0c;游戏发售不到6天&#xff0c;销量已经突破了 800万份。欢迎大家在阿…

问题:以下关于搜索OCPC说法错误的是()? #知识分享#知识分享#媒体

问题&#xff1a;以下关于搜索OCPC说法错误的是&#xff08;)&#xff1f; A&#xff0e;OCPC进入第二阶段&#xff0c;不能随意更换转化目标和页面 B&#xff0e;OCPC可以直接跳过第一阶段&#xff0c;直接开始跑第二阶段 C&#xff0e;开启OCPC计划后&#xff0c;系统就会…

零基础学编程从哪里入手,在学习中可以线上会议答疑解惑

一、前言 零基础学编程可以先从容易学的语言入手&#xff0c;比如中文编程&#xff0c;然后再学其他编程语言则会比较轻松&#xff0c;初步掌握编程思路。很多IT人士一般学2到3种编程语言。 今天给大家分享的中文编程开发语言工具资料如下&#xff1a; 编程入门视频教程链接…
最新文章