简单说网络:TCP+UDP

TCP和UPD:

(1)都工作在传输层

(2)目的都是在程序之中传输数据

(3)数据可以是文本、视频或者图片(对TCP和UDP来说都是一堆二进制数没有太大区别)

一、区别:一个基于连接一个基于非连接

将人与人之间的通信比喻为进程和进程之前的通信:基本上有两种方式(1)写信;(2)打电话;这两种方式在不考虑速度的情况下,这两种方式最大的区别在于:

写信:需要考虑以下三点----所以寄出的的信都变成了未知数,

(1)对方是否可以收到;

(2)收到的信内容是否完整;

(3)先后写两份信过去是否按顺序接收

打电话:

(1)电话接通

(2)互相通话

(3)结束挂断

打电话时以上三个步骤流程都能得到及时的反馈,并且能确认到对方准确的接收到;

重点:打电话是基于连接的也就是TCP协议,而写信是基于非连接的—UDP协议

二、TCP和UDP的实现过程

1、TCP是如何保证以上过程的?有三个关键步骤:三次握手 传输确认 四次挥手;

(1)三次握手是建立连接的过程: 当客户端向服务端发起连接时,会发一个包连接请求数据,过去询问是否可以和服务端建立连接,这个包我们称之为SYN(同步)包;;; 如果服务端收到SYN包同意连接,则回复一个SYN+ACK(同步确认)包;;; 客户端接收到服务器的 SYN-ACK 包后,会发送一个确认包 ACK,确认连接;因为以上过程中相互发送了三包数据,所以称之为三次握手;

在这里插入图片描述

重点:为什么是三次握手而不是两次握手?如果在服务端发送SYN+ACK包后就建立连接,会出现已失效的报文突然又传到服务器引起错误;;;什么意思?假设采用两次握手建立连接,客户端向服务端发送了一个SYN包,来请求建立连接,因为某些未知的原因没有到达服务端,在中间某个网络节点产生了滞留,那么这种情况下为了建立连接,客户端会重发SYN包,这次的数据包正常送达,服务端回复SYN+ACK之后建立了连接,但是第一包数据阻塞的网络节点突然恢复,第一包SYN包有送达到了服务端,这时候服务端会误认为是客户端有新发送了一次请求连接,从而在两次握手之后进入等待数据状态;;;----最终:客户端认为是一次连接,而服务端认为是两次连接,造成了状态不一致,那么如果在三次握手的机制下,服务端收不到最后的ACK包,自然不会认为建立连接成功,所以综上所述,三次握手从本质上来说就是为了解决网络信道不可靠的问题,为了能够在不可靠的信道上建立可靠的连接;经过三次握手之后,客户端和服务端都进入了数据传输状态;

我们以上说过TCP协议需要在不可靠的信道上保证可靠的连接,还有几个问题需要面对:(1)一包数据有可能被拆成多包数据,如何处理丢包问题(2)这些数据包到达的前后顺序不同,如何处理乱序问题;;;针对以上问题,TCP为每一个连接建立了一个发送缓冲区,从建立连接后的第一个字节的序列号为0,后面每个字节的序列号就会增加1,发送数据时,从发送缓存区取一部分数据组成发送报文,在其TCP协议请求头中会附带序列号和长度,服务端在接收到数据后,需要恢复确认报文,确认报文中的ACK=序列号+长度,也就是下一包数据需要发送的起始序列号,这样一问一答的发送方式能够使发送端确认发送的数据被对方收到,发送端可以一次发送连续的多包数据,接收端只需要回复一次ACK就可以了,这样发送端可以把待发送的数据分割成一系列的碎片发送到接收端,接收端根据序列号和长度在接收后重构出来完整的数据,假设其中丢失了某些数据包,在服务端可以要求发送端重传,比如丢失了序列号100-199这一百个字节,接收端向发送端发送ACK=100的报文,客户端收到后会重传这一包数据,然后服务端进行补齐;

在这里插入图片描述

(2)四次挥手:处于连接状态的客户端和服务端都可以发起关闭的连接请求,此时需要四次挥手来进行关闭连接,假设客户端主动发起了关闭连接请求:第一次挥手:客户端需要向服务端发送一包FIN包,表示要关闭连接,自己进入终止等待1状态;第二次挥手:服务端收到FIN包,发送一包ACK包表示自己进入关闭等待状态,客户端进入终止等待2状态,此时服务器不再接收客户端的数据,但仍可以向客户端发送数据,客户端也可以接收数据;第三次挥手:当服务器也准备好关闭连接时,会发送一个 FIN 包给客户端,进入最后确认状态;第四次挥手:客户端收到服务器的 FIN 包后,发送一个 ACK 包作为确认。此时,进入超时等待状态,经过超时时间之后TCP 连接关闭,服务端收到ACK包后立即关闭连接;(为什么客户端需要等待超时时间,为了保证服务端已收到ACK包,如果客户端发送ACK包后,不等待超时时间直接释放了连接,一旦ACK包在网络中丢失,服务端将一直停留在最后确认状态)

在这里插入图片描述

四次挥手的目的:在不可靠的网络连接中进行可靠的连接断开确认

二、UDP协议:UDP协议是基于非连接的,发送数据就是简单的将数据封装一下,将数据从网卡发出去就可以了,数据包之间并没有状态上的联系,正因为有UDP这种简单的处理方式,导致它的性能损耗非常少,对于CPU内存资源的占用也远小于TCP,但是对于网络传输过程中产生的丢包UDP协议并不能保证,所以UDP在传输稳定性上要弱于TCP

在这里插入图片描述

综上:

TCP:稳定可靠,需要准确无误的传输给对方,传输文件、发送邮件、浏览网页

UPD:速度快,但是可能产生丢包,适用于对实时性要求较高的,但是对少量丢包并没有太大要求的场景:语音通话、视频直播等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/376584.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【51单片机】实现一个动静态数码管显示项目(前置知识铺垫,代码&图演示)(5)

前言 大家好吖,欢迎来到 YY 滴单片机 系列 ,热烈欢迎! 本章主要内容面向接触过单片机的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! YY的《C》专栏YY的《C11》专栏YY…

Redis的数据类型Hash使用场景实战

Redis的数据类型Hash使用场景 常见面试题:redis在你们项目中是怎么用的,除了String数据类型还使用什么数据类型? 怎么保证缓存和数据一致性等问题… Hash模型使用场景 知识回顾: redisTemplate.opsForHash() 方法是 Redis 的 …

QAnything之BCEmbedding技术路线

QAnything和BCEmbedding简介 QAnything[github]是网易有道开源的检索增强生成式应用(RAG)项目,在有道许多商业产品实践中已经积累丰富的经验,比如有道速读和有道翻译。QAnything是一个支持任意格式文件或数据库的本地知识库问答系…

python的数据类型

🎈srting(字符串): 操作符: :字符串连接 aabc befg print(ab) #输出 abcdefg * : 重复输出字符串 aabc print(a*3) #输出 abcabcabc [ : ]:截取字符串中的一部分,遵循左闭右开的原则&am…

vue实现购物车案例

话不多说&#xff0c;先上效果图。 安装elementui组件库&#xff0c;可直接食用。 <template><div><!-- 购物车部分 --><el-container><el-header><h1>购物车案例一条龙</h1></el-header><el-main><!-- 折叠面板…

springboot Feign方式注入注解详解

一、FeignClient注解详解 FeignClient是Spring Cloud中用于声明Feign客户端的注解&#xff0c;它使得编写HTTP客户端变得更简单。通过Feign的自动化配置机制&#xff0c;可以很容易地编写HTTP API客户端。以下是FeignClient的详解&#xff1a; 作用&#xff1a;FeignClient注解…

龙年立 Flag,Whale 帷幄 2024 的五大关键词

回顾 2023&#xff0c;AIGC 浪潮的出现&#xff0c;为各行各业带来了更多的商业可能性。在农历新年到来之际&#xff0c;我们也展望 2024&#xff0c;为打好新的硬仗做好充分的准备。 以下 5 大关键词即是「Whale 帷幄」接下来努力的方向和目标。 「盈利」 在 2024 年&#xff…

骨传导运动蓝牙耳机哪个好?五款性价比骨传导运动蓝牙耳机推荐

近两年来&#xff0c;骨传导运动蓝牙耳机在运动领域内日益流行。与传统耳机相比&#xff0c;它的显著优势是能够保持双耳开放&#xff0c;不会堵塞耳道&#xff0c;消除了入耳式耳机可能引起的不适感。此外还能避免运动时耳内出汗可能导致的各种卫生和健康问题。很多人就问了&a…

pmp报考的条件以及考试内容有分享一下的吗?

PMP 是项目管理的入门级证书&#xff0c;全称是项目管理专业人士资格认证&#xff0c;由美国项目管理协会&#xff08;PMI&#xff09;举办的&#xff0c;受到全球200多个国家的认可&#xff0c;从1999 年到现在已经有20多年发展历史了。 顾名思义&#xff0c;PMP考试就是一场…

OpenCV与机器学习:使用opencv和sklearn实现线性回归

前言 线性回归是一种统计分析方法&#xff0c;用于确定两种或两种以上变量之间相互依赖的定量关系。在统计学中&#xff0c;线性回归利用线性回归方程&#xff08;最小二乘函数&#xff09;对一个或多个自变量&#xff08;特征值&#xff09;和因变量&#xff08;目标值&#…

华为 Huawei 交换机 黑洞MAC地址的作用和配置示例

黑洞mac作用&#xff1a;某交换机上配置某个PC的mac地址为黑洞mac&#xff0c;那么这台PC发出来的包都会被交换机丢弃&#xff0c;不会被转发到网络中。 组网需求&#xff1a; 如 图 2-13 所示&#xff0c;交换机 Switch 收到一个非法用户的访问&#xff0c;非法用户的 MAC 地址…

NX/UG二次开发—其他—矩形套料(排料)简介

算法逻辑 排料方法一定时间内获取近似解的算法 看了一些论文和博客&#xff0c;一般排料方法采用最低水平线算法排料&#xff0c;再此基础上增加空余区域填充。 然后配合遗传学算法||模拟退火算法||蚁群算法||免疫算法等&#xff0c;在一定时间内求得一组最优解。 在最简单的…

6.electron之上下文隔离,预加载JS脚本

如果可以实现记得点赞分享&#xff0c;谢谢老铁&#xff5e; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 将 Chromium 和 Node.js 嵌入到了一个二进制文件中&#xff0c;因此它允许你仅需一个代码仓库&#xff0c;就可以撰写支持 Windows、…

跟着pink老师前端入门教程-day21

5.4 常见flex布局思路 5.5 背景线性渐变 语法&#xff1a; background: linear-gradient( 起始方向 , 颜色 1, 颜色 2, ...); background: -webkit-linear-gradient(left, red , blue); background: -webkit-linear-gradient(left top, red , blue); 背景渐变必须添加浏览…

网站被攻击有什么办法呢?

最近&#xff0c;德迅云安全遇到不少网站用户遇到攻击问题&#xff0c;来咨询安全解决方案。目前在所有的网络攻击方式中&#xff0c;DDoS是最常见&#xff0c;也是最高频的攻击方式之一。不少用户网站上线后&#xff0c;经常会遭受到攻击的困扰。有些攻击持续时间比较短影响较…

飞天使-k8s知识点13-kubernetes散装知识点2-statefulsetdaemonset

文章目录 RC RS DeploymentStatefulSet有状态服务控制器DaemonSet守护进程与任务job cronjob RC RS Deployment StatefulSet有状态服务控制器 statefulset StatefulSet 是 Kubernetes 1.9 版本引入的一个新的 API 对象&#xff0c;主要用于处理有状态的服务。StatefulSet 与 De…

java的excel列行合并模版

1.效果 2.模版 <tableborder"1"cellpadding"0"cellspacing"0"class"tablebor"id"TABLE"><tr align"center" class"bg217"><td style"background-color: #008000; color: #ffffff;p…

安卓学习笔记之八:本地化的简单例子(kotlin版本)

本地化及多语言支持&#xff0c;是目前手机软件必须面对的问题&#xff0c;这里用一个简单的例子来说明在Android Studio下如何实现。 创建一个Empty Views Activity项目&#xff0c;语言选择Kotlin 实现一个简单的功能&#xff0c;一条欢迎&#xff0c;一个按钮&#xff0c;…

QT设置qss

Qt设置qss文件&#xff08;设置在qrc中&#xff09; 1、右击项目选择添加新文件 2、在弹出的对话框中选择Qt -> Qt Resource File 3、随便起一个名称 4、在代码路径下新建一个stylesheet.qss文件&#xff0c;随便写入一些样式 5、右击resources.qrc&#xff0c;选择添加…

嵌入式系统设计师

系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 第一章 计算机系统基础1、数值转换数的转换数据的存储单位 第一章 计算机系统基础 1、数值转换 数的转换 数据的存储…
最新文章