数学建模-灰色预测最强讲义 GM(1,1)原理及Python实现

目录

一、GM(1,1)模型预测原理

二、GM(1,1)模型预测步骤

2.1 数据的检验与处理

2.2 建立模型

2.3 检验预测值

三、案例 


灰色预测应用场景:时间序列预测

灰色预测的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型,即对原始数据做累加生成得到近似的指数规律再进行建模的方法。

优点是不需要很多的数据,一般只需要4个数据就可以,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成序列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。

缺点是只适用于中短期的预测,只适合指数增长的预测。

一、GM11)模型预测原理

二、GM11)模型预测步骤

2.1 数据的检验与处理

2.2 建立模型

2.3 检验预测值

三、案例 

由北方某城市1986-1992年道路交通噪声平均值声级数据如表,进行未来10年的预测。

解:

级比检验

首先导入数据,做级比检验

import pandas as pd
import numpy as np
data = pd.read_excel(r"C:\Users\Terry\Desktop\城市交通噪声数据.xlsx")
x_0 = np.array(data["噪声分贝"].to_list()) # [1,2,3] ndarray
x_0
# 级比检验
def level_ratio_test(x):
    # 可容覆盖范围
    n = len(x)
    cover_range = [np.exp(-2/(n+1)), np.exp(2/(n+1))]
    # 计算x[i]/x[i+1]的值,即计算级比
    lambda_x = x[:-1] / x[1:]
    for i in lambda_x:
        if i < cover_range[0] or i > cover_range[1]:
            print("不通过级比检验,无法使用GM(1,1)")
            break
            return
    print("通过级比检验,可以使用GM(1,1)")
    
level_ratio_test(x_0)

注:这里直接写了一个函数,计算量可容覆盖范围,循环判断是每个数的级比是否满足要求,如果不满足,跳出循环,并输出无法使用GM(1,1),如果循环结束,仍然没有输出无法使用,则标明所有级比均通过检验可以输出“通过级比检验,可以使用GM(1,1)”

建模及预测

# 1.计算一次累加生成序列z_1
x_1 = x_0.cumsum()

# 2.计算均值生成序列z_1
z_1 = (x_1[:-1] + x_1[1:]) / 2.0

# 3.计算B矩阵
B = np.vstack([-z_1, np.ones(len(x_0)-1)]).T

# 4.计算Y矩阵
Y = x_0[1:].reshape((-1, 1))

# 5.计算a,b
# a为发展系数 b为灰色作用量
[[a], [b]] = np.linalg.inv(B.T @ B) @ B.T @ Y  # 计算参数

# 6.原始年份的预测值
x_1_predict = []
n = len(x_0)
for k in range(n): # 如果预测k个未来年份 这里就n+k 假设预测未来5年就n+5
    x_1_predict.append((x_0[0]-b/a)*np.exp(-a*k) + b/a) 

# 7.还原数据
x_0_predict = np.hstack([x_0[0],np.diff(x_1_predict)])

结果检验

import pandas as pd
result = pd.DataFrame({"原始数据":x_0,
                 "预测数据":x_0_predict})
# 残差:真实值 - 预测值
result["残差"] = result["原始数据"] - result["预测数据"]
# 相对误差
result["相对误差"] = (abs(result["原始数据"] - result["预测数据"]) /  result["原始数据"]).map('{:.2%}'.format)
# 级比偏差
lambda_x = x_0[:-1] / x_0[1:]
result["级比偏差值"] = np.append(np.nan, abs(1-(1-0.5*a)/(1+0.5*a)*lambda_x))
result

相对误差、级别偏差均小于0.1,达到较高要求。

结果描述及未来预测

通过绘制折线图来看真实值和预测值的比较

result = result.set_index(data.年份)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#  输出高清图像
%config InlineBackend.figure_format = 'retina'
%matplotlib inline

#设定 seaborn 风格
sns.set()
with plt.xkcd():
    #用 matplotlib 画出每个序列的折线
    plt.figure(figsize=(10,6)) 
    plt.plot(result['原始数据'], label='Original data',marker='o',color='g')
    plt.plot(result['预测数据'], label='Predicted data',marker='X',color='r')
        
    # 设定图例和标题
    plt.legend()
    plt.title('Comparison of Original Data and Predicted Data')
    
    # 设置坐标轴范围
    plt.ylim(60, 85)
    # 显示图表
    plt.show()

# 假设预测10年
x_1_predict = []
for k in range(n+10): # 如果预测k个未来年份 这里就n+k 假设预测未来5年就n+5
    x_1_predict.append((x_0[0]-b/a)*np.exp(-a*k) + b/a) # 递推计算 第k+1个数 比如k=0的时候 就是第一个预测值 
x_1_predict
# 7.还原数据
x_0_predict = np.hstack([x_0[0],np.diff(x_1_predict)])
x_0_predict

year = data["年份"].tolist()
for i in range(10):
  year.append(year[-1]+1)
x_0_predict_more = pd.DataFrame({"未来预测":x_0_predict,"年份":year})
x_0_predict_more = x_0_predict_more.set_index("年份")
x_0_predict_more.iloc[0:n-1,:] = np.nan

with plt.xkcd():
    #用 matplotlib 画出每个序列的折线
    plt.figure(figsize=(10,6)) 
    plt.plot(result['原始数据'], label='Original data',marker='o',color='g')
    plt.plot(result['预测数据'], label='Predicted data',marker='X',color='r')
    plt.plot(x_0_predict_more['未来预测'], label='Predicted Future data',marker='1',color='b',linestyle='--')
        
    # 设定图例和标题
    plt.legend()
    plt.title('Comparison of Original Data and Predicted Data')
    
    # 设置坐标轴范围
    plt.ylim(60, 80)
    # 显示图表
    plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/378603.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

改变AI服务器:探索界面互连芯片技术的创新突破

根据TrendForce的数据&#xff0c;AI服务器的出货量约为130,000台&#xff0c;占全球服务器总出货量的约1%。随着微软、Meta、百度和字节跳动等主要制造商相继推出基于生成式AI的产品和服务&#xff0c;订单量显著增加。预测显示&#xff0c;在ChatGPT等应用的持续需求推动下&a…

Java+微信小程序实现智慧家政系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服务4.2 新增单条服务订单4.3 新增留言反馈4.4 小程序登录4.5 小程序数据展示 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的智慧家政系统&#xff0…

TCP 传输控制协议

1 TCP 1.1 TCP 最主要的特点 1.TCP 是面向连接的运输层协议。 2.每一条 TCP 连接只能有两个端点 (endpoint)&#xff0c;每一条 TCP 连接只能是点对点的&#xff08;一对一&#xff09;。 3.TCP 提供可靠交付的服务。 4.TCP 提供全双工通信。 5.面向字节流 TCP 中的“流…

redisson源码解析

由于synchronized跟ReetrantLock是JVM级别的锁&#xff0c;在分布式情况下失效&#xff0c;这时候我们通常会选择redisson基于redis封装好的分布式锁。下面我们一起来分析以下redisson的源码。 使用方式 流程 getLock源码 给命令执行器赋值给看门狗时间赋值&#xff0c;默认30…

【芯片设计- RTL 数字逻辑设计入门 11.1 -- 状态机实现 移位运算与乘法 1】

文章目录 移位运算与乘法状态机简介SystemVerilog中的测试平台VCS 波形仿真 阻塞赋值和非阻塞赋值有限状态机&#xff08;FSM&#xff09;与无限状态机的区别 本篇文章接着上篇文章【芯片设计- RTL 数字逻辑设计入门 11 – 移位运算与乘法】 继续介绍&#xff0c;这里使用状态机…

PCA与梯度上升法

PAC 主成分分析&#xff08;Principal Component Analysis&#xff09; 一个非监督的机器学习算法主要用于数据的降维通过降维&#xff0c;可以发现更便于人类理解的特征其他应用&#xff1a;可视化&#xff1b;去噪 如何找到这个让样本间间距最大的轴&#xff1f; 如何定义样…

【我与Java的成长记】之String类详解

系列文章目录 能看懂文字就能明白系列 C语言笔记传送门 Java笔记传送门 &#x1f31f; 个人主页&#xff1a;古德猫宁- &#x1f308; 信念如阳光&#xff0c;照亮前行的每一步 文章目录 系列文章目录&#x1f308; *信念如阳光&#xff0c;照亮前行的每一步* 前言一、字符串构…

zabbix配置主动监控

1.准备一台新的主机&#xff0c;安装相关软件包。 [rootsishi ~]# rpm -Uvh https://repo.zabbix.com/zabbix/5.0/rhel/7/x86_64/zabbix-release-5.0-1.el7.noarch.rpm [rootsishi ~]# yum -y install zabbix-agent2.修改zabbix-agent端的配置文件 [rootsishi ~]# vim /etc/z…

图像处理入门:OpenCV的基础用法解析

图像处理入门&#xff1a;OpenCV的基础用法解析 引言OpenCV的初步了解深入理解OpenCV&#xff1a;计算机视觉的开源解决方案什么是OpenCV&#xff1f;OpenCV的主要功能1. 图像处理2. 图像分析3. 结构分析和形状描述4. 动态分析5. 三维重建6. 机器学习7. 目标检测 OpenCV的应用场…

SegmentAnything官网demo使用vue+python实现

一、效果&准备工作 1.效果 没啥好说的&#xff0c;低质量复刻SAM官网 https://segment-anything.com/ 需要提一点&#xff1a;所有生成embedding和mask的操作都是python后端做的&#xff0c;计算mask不是onnxruntime-web实现的&#xff0c;前端只负责了把rle编码的mask解…

【MacOS】装 mac-win10 双系统(2017年的老mac,Intel芯片)

Navigator 一、前情二、完整过程2.1 Mac系统迁移2.2 分区合并2.3 下载win10镜像2.4 安装win102.5 安装驱动等2.6 设置默认启动系统 一、前情 昨天给学妹的mac装软件。发现之前她找维修店装了双系统&#xff0c;但是win10根本不能用&#xff0c;搞得乱七八糟的&#xff0c;于是…

产品经理学习-产品运营《海报制作》

如何策划一款优秀的海报 海报是什么&#xff1f; 是一种将文字和图片结合的信息传递形式&#xff1b;其作用和目的是把想传递给用户的信息高效的传递出去&#xff0c;让用户在极短的时间内产生兴趣&#xff0c;进而产生收藏、分享等行为。 海报的类型&#xff1a; 类型 特点 …

qt/c++实现表情选择框

&#x1f482; 个人主页:pp不会算法^ v ^ &#x1f91f; 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 &#x1f4ac; 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 实现功能 。编解码的设计 。映射关系设计 。匹配机制设计 演示效…

上海泗博HART转ModbusTCP网关HME-635应用案例之组态王和超声波液位计通信

如今工业现场的应用也逐渐把现场的不同应用协议转换成以太网&#xff0c;以此来提升现场的通信速度和质量。Modbus TCP是工业以太网协议的一种&#xff0c;也是现场应用中最常使用的。本应用案例是基于Modbus TCP的组态王和基于HART的超声波液位计之间数据通讯的具体应用。 应用…

小白都能看懂的力扣算法详解——链表(一)

&#xff01;&#xff01;本篇所选题目及解题思路均来自代码随想录 (programmercarl.com) 一 203.移除链表元素 题目要求&#xff1a;给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回新的头节点。 203.…

【Java数据结构】ArrayList和LinkedList的遍历

一&#xff1a;ArrayList的遍历 import java.util.ArrayList; import java.util.Iterator; import java.util.List;/*** ArrayList的遍历*/ public class Test {public static void main(String[] args) {List<Integer> list new ArrayList<>();list.add(5);list…

探索C语言中的联合体与枚举:数据多面手的完美组合!

​ ✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;C语言学习 贝蒂的主页&#xff1a;Betty‘s blog 1. 联合体的定义 联合体又叫共用体&#xff0c;它是一种特殊的数据类型&…

【网页设计期末】茶文化网站

本文资源&#xff1a;https://download.csdn.net/download/weixin_47040861/88818886 1.题目要求 设计要求&#xff1a; &#xff08;1&#xff09;网站页面数量不少于4个&#xff0c;文件命名规范&#xff0c;网站结构要求层次清楚&#xff0c;目录结构清晰&#xff0c;代码…

TCP的连接和断开详解

目录 1.TCP基础知识 1.1.TCP 头格式 1.2.TCP协议介绍 1.3.UDP协议介绍 1.4.TCP 和 UDP 区别 1.5.TCP 和 UDP 应用场景 1.6.计算机网络相关术语&#xff08;缩写&#xff09; 2.TCP 连接建立&#xff1a;三次握手 2.1.TCP 三次握手过程 2.2.三次握手原理 2.3.异常分析…

浏览器F12调试

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…