3.2 Verilog 时延

关键词:时延, 惯性时延

连续赋值延时语句中的延时,用于控制任意操作数发生变化到语句左端赋予新值之间的时间延时。

时延一般是不可综合的。

寄存器的时延也是可以控制的,这部分在时序控制里加以说明。

连续赋值时延一般可分为普通赋值时延、隐式时延、声明时延。

下面 3 个例子实现的功能是等效的,分别对应 3 种不同连续赋值时延的写法。

//普通时延,A&B计算结果延时10个时间单位赋值给Z

wire Z, A, B ;
assign #10    Z = A & B ;

 
//隐式时延,声明一个wire型变量时对其进行包含一定时延的连续赋值。

wire A, B;
wire #10        Z = A & B;

 
//声明时延,声明一个wire型变量是指定一个时延。因此对该变量所有的连续赋值都会被推迟到指定的时间。除非门级建模中,一般不推荐使用此类方法建模。

wire A, B;
wire #10 Z ;
assign           Z =A & B

惯性时延

在上述例子中,A 或 B 任意一个变量发生变化,那么在 Z 得到新的值之前,会有 10 个时间单位的时延。如果在这 10 个时间单位内,即在 Z 获取新的值之前,A 或 B 任意一个值又发生了变化,那么计算 Z 的新值时会取 A 或 B 当前的新值。所以称之为惯性时延,即信号脉冲宽度小于时延时,对输出没有影响。

因此仿真时,时延一定要合理设置,防止某些信号不能进行有效的延迟。

对一个有延迟的与门逻辑进行时延仿真。

实例

module time_delay_module(
    input   ai, bi,
    output  so_lose, so_get, so_normal);
 
    assign #20      so_lose      = ai & bi ;
    assign  #5      so_get       = ai & bi ;
    assign          so_normal    = ai & bi ;
endmodule

testbench 参考如下:

实例

`timescale 1ns/1ns

module test ;
    reg  ai, bi ;
    wire so_lose, so_get, so_normal ;
 
    initial begin
        ai        = 0 ;
        #25 ;      ai        = 1 ;
        #35 ;      ai        = 0 ;        //60ns
        #40 ;      ai        = 1 ;        //100ns
        #10 ;      ai        = 0 ;        //110ns
    end
 
    initial begin
        bi        = 1 ;
        #70 ;      bi        = 0 ;
        #20 ;      bi        = 1 ;
    end
 
    time_delay_module  u_wire_delay(
        .ai              (ai),
        .bi              (bi),
        .so_lose         (so_lose),
        .so_get          (so_get),
        .so_normal       (so_normal));
 
    initial begin
        forever begin
            #100;
            //$display("---gyc---%d", $time);
            if ($time >= 1000) begin
                $finish ;
            end
        end
    end
 
endmodule

仿真结果如下:

信号 so_normal 为正常的与逻辑。

由于所有的时延均大于 5ns,所以信号 so_get 的结果为与操作后再延迟 5ns 的结果。

信号 so_lose 前一段是与操作后再延迟 20ns 的结果。

由于信号 ai 第二个高电平持续时间小于 20ns,so_lose 信号会因惯性时延而漏掉对这个脉冲的延时检测,所以后半段 so_lose 信号仍然为 0。

希望你也学会了,更多编程源码模板请来二当家的素材网:https://www.erdangjiade.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/378932.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1898_野火FreeRTOS教程阅读笔记_链表操作

1898_野火FreeRTOS教程阅读笔记_链表操作 全部学习汇总: g_FreeRTOS: FreeRTOS学习笔记 (gitee.com) 新的节点的插入,影响到的是链表中最后一个元素的后继以及当前被插入元素的前驱、后继以及归属属性。具体的操作效果为:新的节点更新自己的前…

深度学习中常用激活函数介绍

深度学习中常用激活函数介绍 在深度学习中,激活函数的作用主要是引入非线性特性,提高模型的表达能力。具体如下: 解决线性不可分问题:激活函数可以将输入特征的复杂度提升,使得神经网络能够处理非线性问题&#xff0c…

分布式系统架构介绍

1、为什么需要分布式架构? 增大系统容量:单台系统的性能瓶颈,多台机器才能应对大规模的应用场景,所以就需要我们的应用支撑平台具备分布式架构。 加强系统的可用:为了满足业务的SLA要求,需要通过分布式架构…

第62讲商品搜索动态实现以及性能优化

商品搜索后端动态获取数据 后端动态获取数据&#xff1a; /*** 商品搜索* param q* return*/GetMapping("/search")public R search(String q){List<Product> productList productService.list(new QueryWrapper<Product>().like("name", q)…

Java学习笔记2024/2/8

面向对象 //面向对象介绍 //面向: 拿、找 //对象: 能干活的东西 //面向对象编程: 拿东西过来做对应的事情 //01-如何设计对象并使用 //1.类和对象 //2.类的几个不错注意事项 1. 类和对象 1.1 类和对象的理解 客观存在的事物皆为对象 &#xff0c;所以我们也常常说万物皆对…

机器学习 | 深入集成学习的精髓及实战技巧挑战

目录 xgboost算法简介 泰坦尼克号乘客生存预测(实操) lightGBM算法简介 《绝地求生》玩家排名预测(实操) xgboost算法简介 XGBoost全名叫极端梯度提升树&#xff0c;XGBoost是集成学习方法的王牌&#xff0c;在Kaggle数据挖掘比赛中&#xff0c;大部分获胜者用了XGBoost。…

Java后端技术助力,党员学习平台更稳定

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

大模型2024规模化场景涌现,加速云计算走出第二增长曲线

导读&#xff1a;2024&#xff0c;大模型第一批规模化应用场景已出现。 如果说“百模大战”是2023年国内AI产业的关键词&#xff0c;那么2024年我们将正式迈进“应用为王”的新阶段。 不少业内观点认为&#xff0c;2024年“百模大战”将逐渐收敛甚至洗牌&#xff0c;而大模型在…

video / image上传操作-校验、截取首帧和正方形预览图等

常见video / image上传操作-校验、截取首帧和正方形预览图等。 上回搞了一个视频和图片上传和校验的需求&#xff0c;感觉学到很多&#xff0c;一些常见的函数记录如下&#xff1a; 1. 图片校验尺寸 const { maxCount 30, maxWidth, maxHeight, minHeight 200, minWidth …

Java基础知识练习题

1.对Java源文件进行编译操作的命令是&#xff08;B&#xff09; A.Java B.javac C.where is java D.javaw 2.下列命令中&#xff0c;用来运行Java程序的是&#xff08;A&#xff09;A.java B. javadoc C. jar D. javac 分析&#xff1a; 对Java源程序进行编译的命令是J…

力扣102. 二叉树的层序遍历 (复习vector和queue的常见用法

目录 题目描述 题目解析 题目答案 题目所用知识点 最后 题目描述 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术…

使用pygame生成红包封面

import pygame import sys# 初始化pygame pygame.init()# 设置红包封面尺寸 size width, height 640, 960 screen_color (255, 0, 0) # 红色背景# 创建窗口 screen pygame.display.set_mode(size) pygame.display.set_caption(红包封面)# 加载龙形图片 dragon_image pygam…

一些参数(仅供个人理解)

1.mAP&#xff1a; 数据集的平均准确率 mAP50-95&#xff1a;mAP阈值为50到mAP阈值为95&#xff0c;间隔5%,取得10个mAP值&#xff0c;然后对这十个值取平均。 目标检测评估指标mAP&#xff1a;从Precision,Recall,到AP50-95【未完待续】_map50和map50-95-CSDN博客 2.IoU&a…

JVM调优(Window下)

1、编写代码&#xff0c;像下面代码这样&#xff0c;产生OOM&#xff0c; private static final Integer K 1024;/*** 死循环&#xff0c;验证JVM调优* return*/GetMapping(value "/deadLoop")public void deadLoop(){int size K * K * 8;List<byte[]> lis…

C语言第二十一弹---指针(五)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 转移表 1、转移表 总结 1、转移表 函数指针数组的用途&#xff1a;转移表 举例&#xff1a;计算器的⼀般实现&#xff1a; 假设我们需要做一个能够进行加减…

Flume拦截器使用-实现分表、解决零点漂移等

1.场景分析 使用flume做数据传输时&#xff0c;可能遇到将一个数据流中的多张表分别保存到各自位置的问题&#xff0c;同时由于采集时间和数据实际发生时间存在差异&#xff0c;因此需要根据数据实际发生时间进行分区保存。 鉴于此&#xff0c;需要设计flume拦截器配置conf文件…

C#,佩尔数(Pell Number)的算法与源代码

1 佩尔数&#xff08;Pell Number&#xff09; 佩尔数&#xff08;Pell Number&#xff09;是一个自古以来就知道的整数数列&#xff0c;由递推关系定义&#xff0c;与斐波那契数类似。佩尔数呈指数增长&#xff0c;增长速率与白银比的幂成正比。它出现在2的算术平方根的近似值…

一图窥探RAG技术发展现状

2023年除了大语言模型&#xff0c;听到最多的当属RAG&#xff08;检索增强生成技术了&#xff09;&#xff0c;在实际业务场景落地过程中&#xff0c;由于大模型目前的一定局限和能力现状以及Token限制、训练成本等多种因素的影响下&#xff0c;RAG不得不成为大家选择快速试错、…

WebSocket+Http实现功能加成

WebSocketHttp实现功能加成 前言 首先&#xff0c;WebSocket和HTTP是两种不同的协议&#xff0c;它们在设计和用途上有一些显著的区别。以下是它们的主要特点和区别&#xff1a; HTTP (HyperText Transfer Protocol): 请求-响应模型&#xff1a; HTTP 是基于请求-响应模型的协…

Three.js学习8:基础贴图

一、贴图 贴图&#xff08;Texture Mapping&#xff09;&#xff0c;也翻译为纹理映射&#xff0c;“贴图”这个翻译更直观。 贴图&#xff0c;就是把图片贴在 3D 物体材质的表面&#xff0c;让它具有一定的纹理&#xff0c;来为 3D 物体添加细节的一种方法。这使我们能够添加…