C语言操作符详解

操作符的分类

• 算数操作符 : + - * / %
• 移位操作符 : <<  、 >>
• 位操作符 : &  、 | 、  ^
• 赋值操作符 : = += -= *= /= %= <<= >>= &= |= ^=
• 单目操作符 : !、 ++ -- & * + - ~ sizeof ( 类型 )
• 关系操作符 : > >= < <= == !=
• 逻辑操作符 : && ||
• 条件操作符 : ? :
• 逗号表达式 : ,
•下标引用操作符 : []
• 函数调用操作符 : ()
• 结构成员访问操作符 : .    、  ->

进制转换

        二进制与十进制

        在生活中我们最常用的是十进制(十进制满10进1,十进制的每一位都是0~9的数字组成),其实二进制也同样如此(二进制满2进1,二进制的每一位都是0~1的数字组成的)。10进制的数字从右向左是个位、⼗位、百位....,分别每⼀位的权重是 10^0 , 10^1 , 10^2 ...如下:

2进制和10进制是类似的,只要把10换成2就行了。

如果你想要在二进制和十进制之间进行转换:

十进制转二进制:只需要将十进制数依次除二,直到余数为0.由下往上依次所得的余数就是10进制转换出的2进制。

二进制转十进制:将每一位的值乘上权重值就是十进制数了。

二进制与八进制

        8进制的数字每⼀位是0~7的,0~7的数字,各⾃写成2进制,最多有3个2进制位就⾜够了,例如7的二进制是111,所以在2进制转8进制数的时候,从2进制序列中右边低位开始向左每3个2进制位会换算⼀个8进制位,剩余不够3个2进制位的直接换算。

二进制与十六进制

        16进制的数字每⼀位是0~9,a ~f 的,0~9,a ~f的数字,各⾃写成2进制,最多有4个2进制位就⾜够了,例如 f 的⼆进制是1111,所以在2进制转16进制数的时候,从2进制序列中右边低位开始向左每4个2进制位会换算⼀个16进制位,剩余不够4个⼆进制位的直接换算。

原码、反码、补码

         整数的2进制表⽰⽅法有三种,即原码、反码和补码。有符号整数的三种表⽰⽅法均有符号位和数值位两部分,2进制序列中,最⾼位的1位是被当做符号位,剩余的都是数值位。符号位都是⽤0表⽰“正”,⽤1表⽰“负”。
        
正整数的原、反、补码都相同。
负整数的三种表⽰⽅法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
反码得到原码也是可以使⽤:取反,+1的操作。
         对于整形来说:数据存放内存中其 实存放的是补码。
        原因是 :在计算机系统中,数值⼀律⽤补码来表⽰和存储。原因在于,使⽤补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

移位操作符

包括: << 左移操作符和 >> 右移操作符

注意:移位操作符的操作数只能是整数。

左移操作符

移位规则:左边抛弃,右边补0.

如下:

#include <stdio.h>
int main()
{
 int num = 10;
 int n = num<<1;
 printf("n= %d\n", n);
 printf("num= %d\n", num);
 return 0;
}

右移操作符

移位规则:先右移后,分逻辑右移(左边用0填充,右边丢弃)和算数右移(左边的原该值的符号位填充,右边丢弃),大多数情况下都是算数右移。

警告:对于移位运算符,不要移动负数位,这个是标准未定义的。例如:
int num = 10 ;
num>> -1 ; //error

位操作符(&、| 、^ 、~)

&          按位与 有0则0,全1才1

|           按位或  有1则1,全0才0

^          按位异或    相同为0,相异为1
~          按位取反

注: 他们的操作数必须是整数。 因为计算使用的是它们的二进制形式。

 下面举几个例子:

#include <stdio.h>
int main()
{
 int num1 = -3;
 int num2 = 5;
 printf("%d\n", num1 & num2);
 printf("%d\n", num1 | num2);
 printf("%d\n", num1 ^ num2);
 printf("%d\n", ~0);
 return 0;
}
#include <stdio.h>
int main()
{
	int num1 = -3;
	//10000000000000000000000000000011     -3的原码
	//11111111111111111111111111111100     -3的反码
	//11111111111111111111111111111101     -3的补码   
	int num2 = 5;
	//00000000000000000000000000000101     5的原反补码
	printf("%d\n", num1 & num2);//5
	//11111111111111111111111111111101     -3的补码   
	//00000000000000000000000000000101     5的原反补码
	//00000000000000000000000000000101     & 有0则0,全1才1
	printf("%d\n", num1 | num2);//-3
	//11111111111111111111111111111101     -3的补码   
	//00000000000000000000000000000101     5的原反补码
	//11111111111111111111111111111101     | 有1则1,全0才0    补码
	//10000000000000000000000000000011     原码
	printf("%d\n", num1 ^ num2);//-8
	//11111111111111111111111111111101     -3的补码   
	//00000000000000000000000000000101     5的原反补码
	//11111111111111111111111111111000     ^ 相同为0,相异为1   补码
	//10000000000000000000000000001000     原码

	printf("%d\n", ~0);//-1
	//00000000000000000000000000000000     0的原反补码
	//11111111111111111111111111111111     ~ 按位取反 补码
	//10000000000000000000000000000001     原码
	return 0;

逗号表达式

 逗号表达式,就是⽤逗号隔开的多个表达式。

如(exp1, exp2, exp3, …expN)
逗号表达式,从左向右依次执⾏。整个表达式的结果是最后⼀个表达式的结果。
int a = 1;
int b = 2;
int c = (a>b, a=b+10, a, b=a+1);//逗号表达式
c是多少?

答案是13,从左向右依次计算,a  = b + 10 = 12, b = a + 1 = 13.

if (a =b + 1, c=a / 2, d > 0)

这同样是逗号表达式,前两步也可以提出来放在if语句的上面。

a = get_val();
count_val(a);
while (a > 0)
{
 //业务处理
 a = get_val();
 count_val(a);
}

//如果使⽤逗号表达式,改写:
while (a = get_val(), count_val(a), a>0)
{
 //业务处理
}

这就是逗号表达式的几种方式。

下标访问[]、函数调⽤()

1、下标引用操作符

操作数:一个数组名 + 一个索引值

int arr[ 10 ]; // 创建数组
arr[ 9 ] = 10 ; // 实⽤下标引⽤操作符。
[ ] 的两个操作数是 arr 9

2、函数调用操作符

 接收一个或者多个操作符:第⼀个操作数是函数名,剩余的操作数就是传递给函数的参数。

#include <stdio.h>
void test1()
{
 printf("hehe\n");
}
void test2(const char *str)
{
 printf("%s\n", str);
}
int main()
{
 test1(); //这⾥的()就是作为函数调⽤操作符。
 test2("hello bit.");//这⾥的()就是函数调⽤操作符。
 return 0;
}

结构成员访问操作符

1、结构体

         结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如: 标量、数组、指针,甚⾄是其他结构体。

         C语⾔已经提供了内置类型,如:char、short、int、long、float、double等,但是只有这些内置类 型还是不够的,假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不⾏的。描述⼀个学⽣需要名字、年龄、学号、⾝⾼、体重等;描述⼀本书需要作者、出版社、定价等。C语⾔为了解决这个问题,增加了结构体这种⾃定义的数据类型,让程序员可以⾃⼰创造适合的类型。

结构的声明

struct tag
{
        member- list ;
}variable- list ;
描述⼀个学⽣:
struct Stu
{
char name[ 20 ]; // 名字
int age; // 年龄
char sex[ 5 ]; // 性别
char id[ 20 ]; // 学号
}; // 分号不能丢

结构体变量的定义和初始化

//代码1:变量的定义
struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1

struct Point p2; //定义结构体变量p2


//代码2:初始化。
struct Point p3 = {10, 20};

struct Stu //类型声明
{
 char name[15];//名字
 int age; //年龄
};

struct Stu s1 = {"zhangsan", 20};//初始化
struct Stu s2 = {.age=20, .name="lisi"};//指定顺序初始化

//代码3
struct Node
{
 int data;
 struct Point p;
 struct Node* next; 
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化

struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

2、结构成员访问操作符

结构体成员的直接访问

结构体成员的直接访问是通过点操作符(.)访问的。点操作符接受两个操作数。
即:结构体变量.成员名
如下:
#include <stdio.h>
struct Point
{
 int x;
 int y;
}p = {1,2};
int main()
{
 printf("x: %d y: %d\n", p.x, p.y);
 return 0;
}

结构体成员的间接访问

有时候我们得到的不是⼀个结构体变量,⽽是得到了⼀个指向结构体的指针。
即: 结构体指针->成员名
如下所⽰:
#include <stdio.h>
struct Point
{
 int x;
 int y;
};
int main()
{
 struct Point p = {3, 4};
 struct Point *ptr = &p;
 ptr->x = 10;
 ptr->y = 20;
 printf("x = %d y = %d\n", ptr->x, ptr->y);
 return 0;
}

操作符的优先级与结合性

        两个属性决定了表达式求值的计算顺序

优先级

        优先级指的是,如果⼀个表达式包含多个运算符,哪个运算符应该优先执⾏。各种运算符的优先级是不⼀样的。这里之前讲过,不过多阐述。

结合性

如果两个运算符的优先级相同,那就要看结合性了,大部分的运算符是从左向右结合,少数运算符从右向左执行,如赋值运算符。

结合性参考:https://zh.cppreference.com/w/c/language/operator_precedence

表达式求值

整型提升

C语⾔中整型算术运算总是⾄少以缺省整型类型的精度来进⾏的。
为了获得这个精度,表达式中的字符和短整型操作数在使⽤之前被转换为普通整型,这种转换称为整 型提升。
整型提升的意义:
        表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节⻓度⼀般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。
因此,即使两个char类型的相加,在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准⻓度。
通⽤CPU(general-purpose CPU)是难以直接实现两个8⽐特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为int或unsigned int,然后才能送⼊CPU去执⾏运算
char a,b,c;
...
a = b + c;
        这里 b 和 c 的值首先被提升为普通整型,然后再执⾏加法运算,加法运算完成之后,结果将被截断,然后再存储于a中。
如何进⾏整体提升呢?
1. 有符号整数提升是按照变量的数据类型的符号位来提升的
2. ⽆符号整数提升,⾼位补0
// 负数的整形提升
char c1 = -1 ;
变量 c1 的⼆进制位 ( 补码 ) 中只有 8 个⽐特位:
1111111
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为 1
提升之后的结果是:
11111111111111111111111111111111
// 正数的整形提升
char c2 = 1 ;
变量 c2 的⼆进制位 ( 补码 ) 中只有 8 个⽐特位:
00000001
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为 0
提升之后的结果是:
00000000000000000000000000000001
// ⽆符号整形提升,⾼位补 0

算术转换 

        如果某个操作符的各个操作数属于不同的类型,那么除⾮其中⼀个操作数的转换为另⼀个操作数的类型,否则操作就⽆法进⾏。下⾯的层次体系称为寻常算术转换。
long double
double
float
unsigned long int
long int
unsigned int
int
        如果某个操作数的类型在上⾯这个列表中排名靠后,那么⾸先要转换为另外⼀个操作数的类型后执⾏运算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/379259.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 22 部署Zabbix 6.4

一、安装及配置postgresql sudo apt-get update sudo apt-get install postgresql postgresql-client 修改配置文件&#xff0c;配置远程访问&#xff1a;&#xff08;PostgreSQL安装路径下的data&#xff0c;也是安装时data的默认路径&#xff09;data目录下的 pg_hba.conf …

ctfshow-web21~28-WP

爆破(21-28) web21 题目给了一个zip文件,打开后解压是爆破的字典,我们抓包一下网址看看 发现账号和密码都被base64了,我们发送到intruder模块,给爆破的位置加上$符圈住 去base64解码一下看看格式

项目02《游戏-04-开发》Unity3D

基于 项目02《游戏-03-开发》Unity3D &#xff0c; 因前三集资源以及代码冗余问题&#xff0c;本次项目对前三集进行了重做&#xff0c;资源及代码如下&#xff0c; 首先导入场景及人物资源&#xff0c; 为人物添加动画控制器Animator组件&#xff0c; 创建动画控…

【网工】华为设备命令学习(Telnet)

本次实验AR3为我们实际中远程的路由&#xff0c;AR4模拟我们的设备&#xff0c;最终实现Telnet的远程控制路由&#xff01; 本次笔记主要记录Telnet技术实现原理&#xff0c;后续再补充具体配置代码。 Telnet协议是TCP/IP协议族中的一员&#xff0c;是Internet远程登录服务的…

【Fabric.js】监听画布or元素的点击、选中、移动、添加、删除销毁、变形等各事件

在fabric使用过程中&#xff0c;如果想要玩各种花样&#xff0c;那么fabric的事件监听是一定、必须、肯定要掌握&#xff01;&#xff01;&#xff01; 例子就用vue项目组件里的代码&#xff0c;fabric的使用跟vue、react、angular之类的框架都没任何关系&#xff01; 并且本de…

【Web】Spring rce CVE-2022-22965漏洞复现学习笔记

目录 原理概览 漏洞简述 Tomcat AccessLogValve 和 access_log 例题: 原理概览 spring框架在传参的时候会与对应实体类自动参数绑定&#xff0c;通过“.”还可以访问对应实体类的引用类型变量。使用getClass方法&#xff0c;通过反射机制最终获取tomcat的日志配置成员属性…

鸿蒙开发-UI-图形-图片

鸿蒙开发-UI-组件 鸿蒙开发-UI-组件2 鸿蒙开发-UI-组件3 鸿蒙开发-UI-气泡/菜单 鸿蒙开发-UI-页面路由 鸿蒙开发-UI-组件导航-Navigation 鸿蒙开发-UI-组件导航-Tabs 文章目录 一、基本概念 二、图片资源加载 1. 存档图类型数据源 2.多媒体像素图 三、显示矢量图 四、图片…

疑似针对安全研究人员的窃密与勒索

前言 笔者在某国外开源样本沙箱平台闲逛的时候&#xff0c;发现了一个有趣的样本&#xff0c;该样本伪装成安全研究人员经常使用的某个渗透测试工具的破解版压缩包&#xff0c;对安全研究人员进行窃密与勒索双重攻击&#xff0c;这种双重攻击的方式也是勒索病毒黑客组织常用的…

MySQL篇之索引

一、定义 索引&#xff08;index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff08;B树&#xff09;&#xff0c;这些数据结构以某种方式引用&#xff08;指向&#xff09;数据&#xff0…

数字图像处理实验记录九(数字形态学实验)

一、基础知识 1.形态学&#xff0c;用于从图像中提取对表达和描绘区域形状有意义的图像分量&#xff0c;使后续的识别工作能够抓住目标对象最为有本质的形状特征&#xff0c;如边界连通区域等。 2.膨胀运算&#xff1a;膨胀会使目标区域范围“变大”&#xff0c;将于目标区域接…

TCP和UDP相关问题(重点)——8.TCP的拥塞控制怎么实现的?

在某段时间内&#xff0c;若对网络中某一资源的需求超过了该资源所能提供的可用部分&#xff0c;网络性能就会变坏&#xff0c;比如在高速公路上行驶的车辆&#xff0c;如果一时期内涌入了太多的车辆&#xff0c;道路将变得拥堵&#xff0c;交通状况变差。网络中也是一样&#…

STM32之USART

概述 串口通信&#xff0c;通用异步收发传输器&#xff08;Universal Asynchronous Receiver/Transmitter &#xff09;&#xff0c;简称UART&#xff1b;而USART&#xff08;Universal Synchronous/Asynchronous Receiver/Transmitter&#xff09;通用同步收发传输器。 USAR…

vue3+vite+ts 配置commit强制码提交规范配置 commitlint

配置 git 提交时的 commit 信息&#xff0c;统一提交 git 提交规范 安装命令: npm install -g commitizen npm i cz-customizable npm i commitlint/config-conventional commitlint/cli -D 文件配置 根路径创建文件 commitlint.config.js module.exports {// 继承的规…

ubuntu原始套接字多线程负载均衡

原始套接字多线程负载均衡是一种在网络编程中常见的技术&#xff0c;特别是在高性能网络应用或网络安全工具中。这种技术允许应用程序在多个线程之间有效地分配和处理网络流量&#xff0c;提高系统的并发性能。以下是关于原始套接字多线程负载均衡技术的一些介绍&#xff1a; …

MySQL之体系结构

华子目录 MySQL简介MySQL的特性MySQL版本MySQL常见版本 数据库排名网站MySQL结构体系查看最大连接数查询缓存配置情况 一条SQL语句执行流程 MySQL简介 MySQL是一个小型关系数据库管理系统&#xff0c;开发者为瑞典MySQL AB公司。在2008年1月16号被sun公司10亿美金收购。2009年…

CTFshow web(php命令执行 45-49)

基础知识&#xff1a; 1.绕过cat使用&#xff1a; tac more less head tac tail nl od(二进制查看) vi vim sort uniq rev 2.绕过空格用&#xff1a; %09 <> ${IFS} $IFS$ {cat,fl*} %20 注&#xff1a; %09 ##&#xff08;Tab&#xff09; %20 ##&#xff08;spa…

负载均衡(3)

文章目录 一、HAProxy介绍企业版社区版版本对比HAProxy功能支持功能不具备的功能 二、编译安装HAProxy解决lua环境Centos 基础环境 编译安装HAProxy验证HAProxy版本HAProxy启动脚本配置文件启动haproxy验证haproxy状态查看haproxy的状态页面 三、HAProxy基础配置详解global配置…

基金是什么

一、基金是什么&#xff1f; 买基金就是委托别人帮我们投资&#xff0c;替我们买卖股票债券。 二、为什么委托别人&#xff1f; 因为我们不懂投资方面的知识&#xff0c;或者我们没有时间来做投资&#xff0c;那么就可以找专业人士帮我们投资。就像家长帮小孩报辅导班&#…

蓝桥杯(Web大学组)2022国赛真题:水果消消乐

思路&#xff1a; 记录点击次数&#xff0c;点击次数为1时&#xff0c;记录点击下标&#xff08;用于隐藏or消除&#xff09;、点击种类&#xff0c;点击次数为2时&#xff0c;判断该下标所对应种类与第一次是否相同 相同&#xff1a;两个都visibility:hidden &#xff08;占…

PV、UV、IP

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言1. PV1.1 PV 计算1.2 PV 的影响因素 2. UV2.1 UV 计算2.2UV 的影响因素 3. IP3.1 IP和UV①UV大于IP②UV小于IP 三者的关系PV 和 UV 前言 PV、UV、IP是我们在运…
最新文章