并发容器(Map、List、Set)实战及其原理

目录

JUC包下的并发容器

CopyOnWriteArrayList 

应用场景

CopyOnWriteArrayList使用

CopyOnWriteArrayList原理 

CopyOnWriteArrayList 的缺陷 

扩展知识:迭代器的 fail-fast 与 fail-safe 机制 

ConcurrentHashMap 

应用场景 

ConcurrentHashMap使用

数据结构 

ConcurrentSkipListMap 

跳表 

ConcurrentSkipListMap使用 

电商场景中并发容器的选择 

案例一:电商网站中记录一次活动下各个商品售卖的数量。

案例二:在一次活动下,为每个用户记录浏览商品的历史和次数。

案例三:在活动中,创建一个用户列表,记录冻结的用户。一旦冻结,不允许再下单抢购,但是可以浏览。


JUC包下的并发容器

        Java的集合容器框架中,主要有四大类别:List、Set、Queue、Map,大家熟知的这些集合类ArrayList、LinkedList、HashMap这些容器都是非线程安全的。

        所以,Java先提供了同步容器供用户使用。同步容器可以简单地理解为通过synchronized来实现同步的容器,比如Vector、Hashtable以及SynchronizedList等容器。这样做的代价是削弱了并发性,当多个线程共同竞争容器级的锁时,吞吐量就会降低。

        因此为了解决同步容器的性能问题,所以才有了并发容器。java.util.concurrent包中提供了多种并发类容器:

CopyOnWriteArrayList

对应的非并发容器:ArrayList

目标:代替Vector、synchronizedList

原理:利用高并发往往是读多写少的特性,对读操作不加锁,对写操作,先复制一份新的集合,在新的集合上面修改,然后将新集合赋值给旧的引用,并通过volatile 保证其可见性,当然写操作的锁是必不可少的了。

CopyOnWriteArraySet

对应的非并发容器:HashSet

目标:代替synchronizedSet

原理:基于CopyOnWriteArrayList实现,其唯一的不同是在add时调用的是CopyOnWriteArrayList的addIfAbsent方法,其遍历当前Object数组,如Object数组中已有了当前元素,则直接返回,如果没有则放入Object数组的尾部,并返回。

ConcurrentHashMap

对应的非并发容器:HashMap

目标:代替Hashtable、synchronizedMap,支持复合操作

原理:JDK6中采用一种更加细粒度的加锁机制Segment“分段锁”,JDK8中采用CAS无锁算法。

ConcurrentSkipListMap

对应的非并发容器:TreeMap

目标:代替synchronizedSortedMap(TreeMap)

原理:Skip list(跳表)是一种可以代替平衡树的数据结构,默认是按照Key值升序的。

CopyOnWriteArrayList 

        CopyOnWriteArrayList 是 Java 中的一种线程安全的 List,它是一个可变的数组,支持并发读和写。与普通的 ArrayList 不同,它的读取操作不需要加锁,因此具有很高的并发性能。 

应用场景

CopyOnWriteArrayList 的应用场景主要有两个方面:

  • 读多写少的场景

        由于 CopyOnWriteArrayList 的读操作不需要加锁,因此它非常适合在读多写少的场景中使用。例如,一个读取频率比写入频率高得多的缓存,使用 CopyOnWriteArrayList 可以提高读取性能,并减少锁竞争的开销。

  • 不需要实时更新的数据

        由于 CopyOnWriteArrayList 读取的数据可能不是最新的,因此它适合于不需要实时更新的数据。例如,在日志应用中,为了保证应用的性能,日志记录的操作可能被缓冲,并不是实时写入文件系统,而是在某个时刻批量写入。这种情况下,使用 CopyOnWriteArrayList 可以避免多个线程之间的竞争,提高应用的性能。

CopyOnWriteArrayList使用

基本使用

        和 ArrayList 在使用方式方面很类似。

// 创建一个 CopyOnWriteArrayList 对象
CopyOnWriteArrayList copyOnWriteArrayList= new CopyOnWriteArrayList();
// 新增
copyOnWriteArrayList.add(1);
// 设置(指定下标)
copyOnWriteArrayList.set(0, 2);
// 获取(查询)
copyOnWriteArrayList.get(0);
// 删除
copyOnWriteArrayList.remove(0);
// 清空
copyOnWriteArrayList.clear();
// 是否为空
copyOnWriteArrayList.isEmpty();
// 是否包含
copyOnWriteArrayList.contains(1);
// 获取元素个数
copyOnWriteArrayList.size();

IP 黑名单判定

        当应用接入外部请求后,为了防范风险,一般会对请求做一些特征判定,如对请求 IP 是否合法的判定就是一种。IP 黑名单偶尔会被系统运维人员做更新。

public class CopyOnWriteArrayListDemo {

    private static CopyOnWriteArrayList<String> copyOnWriteArrayList = new CopyOnWriteArrayList<>();
    // 模拟初始化的黑名单数据
    static {
        copyOnWriteArrayList.add("ipAddr0");
        copyOnWriteArrayList.add("ipAddr1");
        copyOnWriteArrayList.add("ipAddr2");
    }

    public static void main(String[] args) throws InterruptedException {
        Runnable task = new Runnable() {
            public void run() {
                // 模拟接入用时
                try {
                    Thread.sleep(new Random().nextInt(5000));
                } catch (Exception e) {}

                String currentIP = "ipAddr" + new Random().nextInt(6);
                if (copyOnWriteArrayList.contains(currentIP)) {
                    System.out.println(Thread.currentThread().getName() + " IP " + currentIP + "命中黑名单,拒绝接入处理");
                    return;
                }
                System.out.println(Thread.currentThread().getName() + " IP " + currentIP + "接入处理...");
            }
        };
        new Thread(task, "请求1").start();
        new Thread(task, "请求2").start();
        new Thread(task, "请求3").start();

        new Thread(new Runnable() {
            public void run() {
                // 模拟用时
                try {
                    Thread.sleep(new Random().nextInt(2000));
                } catch (Exception e) {}

                String newBlackIP = "ipAddr3";
                copyOnWriteArrayList.add(newBlackIP);
                System.out.println(Thread.currentThread().getName() + " 添加了新的非法IP " + newBlackIP);
            }
        }, "IP黑名单更新").start();

        Thread.sleep(1000000);
    }
}

 

CopyOnWriteArrayList原理 

        CopyOnWriteArrayList 内部使用了一种称为“写时复制”的机制。当需要进行写操作时,它会创建一个新的数组,并将原始数组的内容复制到新数组中,然后进行写操作。因此,读操作不会被写操作阻塞,读操作返回的结果可能不是最新的,但是对于许多应用场景来说,这是可以接受的。此外,由于读操作不需要加锁,因此它可以支持更高的并发度。 

CopyOnWriteArrayList 的缺陷 

CopyOnWriteArrayList 有几个缺点:

  • 由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc
  • 不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set 操作后,读取到数据可能还是旧的,虽然 CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求;
  • CopyOnWriteArrayList 合适读多写少的场景,不过这类慎用。因为谁也没法保证 CopyOnWriteArrayList 到底要放置多少数据,万一数据稍微有点多,每次 add/set 都要重新复制数组,这个代价实在太高昂了。在高性能的互联网应用中,这种操作分分钟引起故障。

扩展知识:迭代器的 fail-fast 与 fail-safe 机制 

        在 Java 中,迭代器(Iterator)在迭代的过程中,如果底层的集合被修改(添加或删除元素),不同的迭代器对此的表现行为是不一样的,可分为两类:Fail-Fast(快速失败)和 Fail-Safe(安全失败)。

fail-fast 机制

        fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生 fail-fast 事件。例如:当某一个线程A通过 iterator 去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生 fail-fast 事件。在 java.util 包中的集合,如 ArrayList、HashMap 等,它们的迭代器默认都是采用 Fail-Fast 机制。

fail-fast解决方案

  • 方案一:在遍历过程中所有涉及到改变modCount 值的地方全部加上synchronized 或者直接使用 Collection#synchronizedList,这样就可以解决问题,但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。
  • 方案二:使用CopyOnWriteArrayList 替换 ArrayList,推荐使用该方案(即fail-safe)。

fail-safe机制

        任何对集合结构的修改都会在一个复制的集合上进行,因此不会抛出ConcurrentModificationException。在 java.util.concurrent 包中的集合,如 CopyOnWriteArrayList、ConcurrentHashMap 等,它们的迭代器一般都是采用 Fail-Safe 机制。

缺点:

  • 采用 Fail-Safe 机制的集合类都是线程安全的,但是它们无法保证数据的实时一致性,它们只能保证数据的最终一致性。在迭代过程中,如果集合被修改了,可能读取到的仍然是旧的数据。
  • Fail-Safe 机制还存在另外一个问题,就是内存占用。由于这类集合一般都是通过复制来实现读写分离的,因此它们会创建出更多的对象,导致占用更多的内存,甚至可能引起频繁的垃圾回收,严重影响性能。

ConcurrentHashMap 

        ConcurrentHashMap是Java中线程安全的哈希表,它支持高并发且能够同时进行读写操作。

        在JDK1.8之前,ConcurrentHashMap使用分段锁以在保证线程安全的同时获得更大的效率。JDK1.8开始舍弃了分段锁,使用自旋+CAS+synchronized关键字来实现同步。官方的解释中:一是节省内存空间 ,二是分段锁需要更多的内存空间,而大多数情况下,并发粒度达不到设置的粒度,竞争概率较小,反而导致更新的长时间等待(因为锁定一段后整个段就无法更新了)三是提高GC效率。

应用场景 

ConcurrentHashMap 的应用场景包括但不限于以下几种:

  • 共享数据的线程安全:在多线程编程中,如果需要进行共享数据的读写,可以使用 ConcurrentHashMap 保证线程安全。
  • 缓存:ConcurrentHashMap 的高并发性能和线程安全能力,使其成为一种很好的缓存实现方案。在多线程环境下,使用 ConcurrentHashMap 作为缓存的数据结构,能够提高程序的并发性能,同时保证数据的一致性。

ConcurrentHashMap使用

基本用法 

// 创建一个 ConcurrentHashMap 对象
ConcurrentHashMap<Object, Object> concurrentHashMap = new ConcurrentHashMap<>();
// 添加键值对
concurrentHashMap.put("key", "value");
// 添加一批键值对
concurrentHashMap.putAll(new HashMap());
// 使用指定的键获取值
concurrentHashMap.get("key");
// 判定是否为空
concurrentHashMap.isEmpty();
// 获取已经添加的键值对个数
concurrentHashMap.size();
// 获取已经添加的所有键的集合
concurrentHashMap.keys();
// 获取已经添加的所有值的集合
concurrentHashMap.values();
// 清空
concurrentHashMap.clear();

其他方法:

  • V putIfAbsent(K key, V value)

        如果 key 对应的 value 不存在,则 put 进去,返回 null。否则不 put,返回已存在的 value。

  • boolean remove(Object key, Object value)

        如果 key 对应的值是 value,则移除 K-V,返回 true。否则不移除,返回 false。

  • boolean replace(K key, V oldValue, V newValue)

        如果 key 对应的当前值是 oldValue,则替换为 newValue,返回 true。否则不替换,返回 false。

统计文件中英文字母出现的总次数 

public class ConcurrentHashMapDemo {

    private static ConcurrentHashMap<String, AtomicLong> concurrentHashMap = new ConcurrentHashMap<>();
    // 创建一个 CountDownLatch 对象用于统计线程控制
    private static CountDownLatch countDownLatch = new CountDownLatch(3);
    // 模拟文本文件中的单词
    private static String[] words = {"we", "it", "is"};

    public static void main(String[] args) throws InterruptedException {
        Runnable task = new Runnable() {
            public void run() {
                for(int i=0; i<3; i++) {
                    // 模拟从文本文件中读取到的单词
                    String word = words[new Random().nextInt(3)];
                    // 尝试获取全局统计结果
                    AtomicLong number = concurrentHashMap.get(word);
                    // 在未获取到的情况下,进行初次统计结果设置
                    if (number == null) {
                        // 在设置时发现如果不存在则初始化
                        AtomicLong newNumber = new AtomicLong(0);
                        number = concurrentHashMap.putIfAbsent(word, newNumber);
                        if (number == null) {
                            number = newNumber;
                        }
                    }
                    // 在获取到的情况下,统计次数直接加1
                    number.incrementAndGet();

                    System.out.println(Thread.currentThread().getName() + ":" + word + " 出现" + number + " 次");
                }
                countDownLatch.countDown();
            }
        };

        new Thread(task, "线程1").start();
        new Thread(task, "线程2").start();
        new Thread(task, "线程3").start();

        try {
            countDownLatch.await();
            System.out.println(concurrentHashMap.toString());
        } catch (Exception e) {}
    }
}

数据结构 

HashTable的数据结构

JDK1.7 中的ConcurrentHashMap 

        在jdk1.7及以下的版本中,结构是用Segments数组 + HashEntry数组 + 链表实现的(写分散) 

JDK1.8中的ConcurrentHashMap

        jdk1.8抛弃了Segments分段锁的方案,而是改用了和HashMap一样的结构操作,也就是数组 + 链表 + 红黑树结构,比jdk1.7中的ConcurrentHashMap提高了效率,在并发方面,使用了cas + synchronized的方式保证数据的一致性 

链表转化为红黑树需要满足2个条件:

  • 链表的节点数量大于等于树化阈值8
  • Node数组的长度大于等于最小树化容量值64
#树化阈值为8
static final int TREEIFY_THRESHOLD = 8;
#最小树化容量值为64
static final int MIN_TREEIFY_CAPACITY = 64;

ConcurrentSkipListMap 

        ConcurrentSkipListMap 是 Java 中的一种线程安全、基于跳表实现的有序映射(Map)数据结构。它是对 TreeMap 的并发实现,支持高并发读写操作。

        ConcurrentSkipListMap适用于需要高并发性能、支持有序性和区间查询的场景,能够有效地提高系统的性能和可扩展性。

跳表 

        跳表是一种基于有序链表的数据结构,支持快速插入、删除、查找操作,其时间复杂度为O(log n),比普通链表的O(n)更高效。

        数据结构操作链接:https://cmps-people.ok.ubc.ca/ylucet/DS/SkipList.html

图一

图二

图三

跳表的特性有这么几点:

  • 一个跳表结构由很多层数据结构组成。
  • 每一层都是一个有序的链表,默认是升序。也可以自定义排序方法。
  • 最底层链表(图中所示Level1)包含了所有的元素。
  • 如果每一个元素出现在LevelN的链表中(N>1),那么这个元素必定在下层链表出现。
  • 每一个节点都包含了两个指针,一个指向同一级链表中的下一个元素,一个指向下一层级别链表中的相同值元素。

跳表的查找

跳表的插入 

跳表插入数据的流程如下:

  1. 找到元素适合的插入层级K,这里的K采用随机的方式。若K大于跳表的总层级,那么开辟新的一层,否则在对应的层级插入。
  2. 申请新的节点。
  3. 调整对应的指针。

假设我要插入元素13,原有的层级是3级,假设K=4:

倘若K=2:

ConcurrentSkipListMap使用 

基本用法 

public class ConcurrentSkipListMapDemo {
    public static void main(String[] args) {
        ConcurrentSkipListMap<Integer, String> map = new ConcurrentSkipListMap<>();
        
        // 添加元素
        map.put(1, "a");
        map.put(3, "c");
        map.put(2, "b");
        map.put(4, "d");
        
        // 获取元素
        String value1 = map.get(2);
        System.out.println(value1); // 输出:b
        
        // 遍历元素
        for (Integer key : map.keySet()) {
            String value = map.get(key);
            System.out.println(key + " : " + value);
        }
        
        // 删除元素
        String value2 = map.remove(3);
        System.out.println(value2); // 输出:c
    }
}

电商场景中并发容器的选择 

案例一:电商网站中记录一次活动下各个商品售卖的数量。

场景分析:需要频繁按商品id做get和set,但是商品id(key)的数量相对稳定不会频繁增删

初级方案:选用HashMap,key为商品id,value为商品购买的次数。每次下单取出次数,增加后再写入

问题:HashMap线程不安全!在多次商品id写入后,如果发生扩容,在JDK1.7 之前,在并发场景下HashMap 会出现死循环,从而导致CPU 使用率居高不下。JDK1.8 中修复了HashMap 扩容导致的死循环问题,但在高并发场景下,依然会有数据丢失以及不准确的情况出现。

选型:Hashtable 不推荐,锁太重,选ConcurrentHashMap 确保高并发下多线程的安全性

案例二:在一次活动下,为每个用户记录浏览商品的历史和次数。

场景分析:每个用户各自浏览的商品量级非常大,并且每次访问都要更新次数,频繁读写

初级方案:为确保线程安全,采用上面的思路,ConcurrentHashMap

问题:ConcurrentHashMap 内部机制在数据量大时,会把链表转换为红黑树。而红黑树在高并发情况下,删除和插入过程中有个平衡的过程,会牵涉到大量节点,因此竞争锁资源的代价相对比较高

选型:用跳表,ConcurrentSkipListMap将key值分层,逐个切段,增删效率高于ConcurrentHashMap

结论:如果对数据有强一致要求,则需使用Hashtable;在大部分场景通常都是弱一致性的情况下,使用ConcurrentHashMap 即可;如果数据量级很高,且存在大量增删改操作,则可以考虑使用ConcurrentSkipListMap。

案例三:在活动中,创建一个用户列表,记录冻结的用户。一旦冻结,不允许再下单抢购,但是可以浏览。

场景分析:违规被冻结的用户不会太多,但是绝大多数非冻结用户每次抢单都要去查一下这个列表。低频写,高频读。

初级方案:ArrayList记录要冻结的用户id

问题:ArrayList对冻结用户id的插入和读取操作在高并发时,线程不安全。Vector可以做到线程安全,但并发性能差,锁太重。

选型:综合业务场景,选CopyOnWriteArrayList,会占空间,但是也仅仅发生在添加新冻结用户的时候。绝大多数的访问在非冻结用户的读取和比对上,不会阻塞。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/381345.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云幻兽帕鲁服务器免费搭建解决方法,白嫖阿里云

阿里云幻兽帕鲁服务器免费搭建方案&#xff0c;先在阿里云高校计划「云工开物」活动领取学生专享300元无门槛代金券&#xff0c;幻兽帕鲁专用服务器4核16G配置26元1个月、149元半年&#xff0c;直接使用这个无门槛300元代金券抵扣即可免费搭建幻兽帕鲁服务器。阿里云服务器网al…

2.8日学习打卡----初学RabbitMQ(三)

2.8日学习打卡 一.springboot整合RabbitMQ 之前我们使用原生JAVA操作RabbitMQ较为繁琐&#xff0c;接下来我们使用 SpringBoot整合RabbitMQ&#xff0c;简化代码编写 创建SpringBoot项目&#xff0c;引入RabbitMQ起步依赖 <!-- RabbitMQ起步依赖 --> <dependency&g…

小游戏和GUI编程(3) | 基于 SFML 的字符阵

小游戏和GUI编程(3) | 基于 SFML 的字符阵 1. 简介 使用 EasyX 图形库时&#xff0c; 官方第一个例子是字符阵。 EasyX 不开源&#xff0c; 也不能跨平台&#xff0c; API 陈旧&#xff0c; API 是 C 而不是 C。 现在使用 SFML 来实现字符阵&#xff0c; 克服 EasyX 的这些问…

OCP使用CLI创建和构建应用

文章目录 环境登录创建project赋予查看权限部署第一个image创建route检查pod扩展应用 部署一个Python应用连接数据库创建secret加载数据并显示国家公园地图 清理参考 环境 RHEL 9.3Red Hat OpenShift Local 2.32 登录 通过 crc console --credentials 可以查看登录信息&…

动态内存管理(下)

1.常见的动态内存的错误 我们在学习动态内存的时候&#xff0c;常出现的一些错误我们来看一下。 1.对NULL指针的解引用操作 例如我们在使用malloc或者calloc开辟动态空间的时候&#xff0c;有时候没有判断是否开辟成功而直接对齐的返回指针进行解引用&#xff0c;此时如果开…

[论文总结] 深度学习在农业领域应用论文笔记12

文章目录 1. 3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset (CVPR, 2020)摘要背景相关研究所提出的数据集方法和结果个人总结 2. Automated flower classification over a large number of classes (Computer Vision, Graphics & Image Processing, 2008)摘要背景分割…

基于图像掩膜和深度学习的花生豆分拣(附源码)

目录 项目介绍 图像分类网络构建 处理花生豆图片完成预测 项目介绍 这是一个使用图像掩膜技术和深度学习技术实现的一个花生豆分拣系统 我们有大量的花生豆图片&#xff0c;并以及打好了标签&#xff0c;可以看一下目录结构和几张具体的图片 同时我们也有几张大的图片&…

Java强训day16(选择题编程题)

选择题 编程题 题目1 import java.util.Scanner;public class Main { public static boolean res(int m) {int sum 0;for(int i1;i<m;i) {if(i!m && m%i 0) {sumi;}}if(sum m)return true;elsereturn false;}public static void main(String[] args) {Scanne…

js手写Promise(上)

目录 构造函数resolve与reject状态改变状态改变后就无法再次改变 代码优化回调函数中抛出错误 thenonFulfilled和onRejected的调用时机异步then多个then 如果是不知道或者对Promise不熟悉的铁铁可以先看我这篇文章 Promise 构造函数 在最开始&#xff0c;我们先不去考虑Promi…

FFmpeg中的Color颜色参数解析、转码和HDR

前言 视频中帧的颜色信息非常重要&#xff0c;表示着编码时用到的标准&#xff0c;意味着解码时也要对应上&#xff0c;或者要使用正确的转换函数&#xff0c;否则就会带来色差问题。 关于FFmpeg中的颜色参数&#xff0c;有下边几个重要的结构体&#xff1a; 颜色参数相关的结…

Git远程仓库的使用(Gitee)及相关指令

目录 1 远程仓库的创建和配置 1.1 创建远程仓库 1.2 设置SSH公钥 2 指令 2.1 git remote add 远端名称(一般为origin) 仓库路径 2.2 git remote 2.3 git push [-f] [--set-upstream] [远端名称 [本地分支名][:远端分支名]] 2.3 git clone url 2.4 git fetch 2.5 git p…

巴尔加瓦算法图解:算法运用(上)

目录 树反向索引傅立叶变换 并行算法MapReduce函数 树 如果能将用户名插入到数组的正确位置就好了&#xff0c;这样就无需在插入后再排序。为此&#xff0c;有人设计了一种名为二叉查找树(binary search tree)的数据结构。 每个node的children 都不大于两个。对于其中的每个…

微信小程序上传代码教程

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 小程序上传代码到gogs上面来 整体架构流程 小程序也要远程连接仓库&#xff0c;实现代码上传 技术名词解释 微信开发者工具gogs 技术细节 连接gogs仓库地址 微信小程序需要head将本地代码和gogs代码同步 小结 …

java学习(多态)

一、多态 含义&#xff1a;方法或对象具有多种形态。是面向对象的第三大特征&#xff0c;多态是建立在封装和继承基础上的。 多态的具体体现&#xff1a; 1&#xff09;方法的多态 &#xff08;例如重写和重载&#xff09; 2&#xff09;对象的多态 多态注意事项&#xff1…

SpringCloud--Gateway解析

一、Gateway简介 Gateway是Spring Cloud官方推出的第二代微服务网关&#xff0c;它旨在提供统一的路由方式以及为微服务应用提供强大的负载均衡能力。与第一代Spring Cloud Netflix Zuul相比&#xff0c;Spring Cloud Gateway在性能、可扩展性、易用性等方面都有了显著的提升。…

python web 框架Django学习笔记

2018年5月 python web 框架Django学习笔记 Django 架站的16堂课 MVC架构设计师大部分框架或大型程序项目中一种软件工程的架构模式&#xff0c;把程序或者项目分为三个主要组成部分&#xff0c;Model数据模型、View视图、Controller控制器。 命令及设置相关 创建数据库及中间…

使用Launch4j将jar包转成.exe可执行文件

Launch4j官网:Launch4j - Cross-platform Java executable wrapper 然后点击上面按钮 随便写个文件名

分享66个相册特效,总有一款适合您

分享66个相册特效&#xff0c;总有一款适合您 66个相册特效下载链接&#xff1a;https://pan.baidu.com/s/1jqctaho4sL_iGSNExhWB6A?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不…

FastDFS安装并整合Openresty

FastDFS安装并整合Openresty 一、安装环境准备【CentOS7.9】二、FastDFS--tracker安装2.1.下载fastdfs2.2.FastDFS安装环境2.3.安装FastDFS依赖libevent库2.4.安装libfastcommon2.5.安装 libserverframe 网络框架2.6.tracker编译安装2.7.安装之后文件目录介绍2.8.错误处理2.9.配…

Android SystemConfig相关

SystemConfig在哪里初始化 它声明在PackageManagerService类的静态方法main()中。在该方法中间定义Injector类对象时&#xff0c;作为它的构造参数。它是调用的SystemConfig.getInstance()实现初始化&#xff0c;之后能通过Injector类对象的getSystemConfig()得到SystemConfig类…