Kafka第二课-代码实战、参数配置详解、设计原理详解

一、代码实战

一、普通java程序实战

  1. 引入依赖
<dependencies>
		<dependency>
			<groupId>org.apache.kafka</groupId>
			<artifactId>kafka-clients</artifactId>
			<version>2.4.1</version>
		</dependency>
		<dependency>
			<groupId>com.alibaba</groupId>
			<artifactId>fastjson</artifactId>
			<version>1.1.41</version>
		</dependency>
		<dependency>
			<groupId>ch.qos.logback</groupId>
			<artifactId>logback-core</artifactId>
			<version>1.1.3</version>
		</dependency>
		<dependency>
			<groupId>ch.qos.logback</groupId>
			<artifactId>logback-classic</artifactId>
			<version>1.1.1</version>
		</dependency>
	</dependencies>
  1. 生产者代码以及参数详解
public class MsgProducer {
    private final static String TOPIC_NAME = "my-replicated-topic-1";

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094");
         /*
         发出消息持久化机制参数
        (1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
        (2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一
             条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
        (3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略
            会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
         /*
        发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在
        接收者那边做好消息接收的幂等性处理
        */
        props.put(ProducerConfig.RETRIES_CONFIG, 3);
        //重试间隔设置
        props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
        //设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        /*
        kafka本地线程会从缓冲区取数据,批量发送到broker,
        设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
        */
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        /*
        默认值是0,意思就是消息必须立即被发送,但这样会影响性能
        一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去
        如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
        */
        props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
        //把发送的key从字符串序列化为字节数组
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //把发送消息value从字符串序列化为字节数组
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        Producer<String, String> producer = new KafkaProducer<String, String>(props);

        int msgNum = 5;
//        final CountDownLatch countDownLatch = new CountDownLatch(msgNum);
        for (int i = 1; i <= msgNum; i++) {
            Order order = new Order(i, 100 + i, 1, 1000.00);
            //指定发送分区
//           ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
//                    , 0, order.getOrderId().toString(), JSON.toJSONString(order));
            //未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
            ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
                    , order.getOrderId().toString(), JSON.toJSONString(order));

            //等待消息发送成功的同步阻塞方法
            RecordMetadata metadata = producer.send(producerRecord).get();
            System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
                    + metadata.partition() + "|offset-" + metadata.offset());

            //异步回调方式发送消息
            /*producer.send(producerRecord, new Callback() {
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception != null) {
                        System.err.println("发送消息失败:" + exception.getStackTrace());

                    }
                    if (metadata != null) {
                        System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
                                + metadata.partition() + "|offset-" + metadata.offset());
                    }
                    countDownLatch.countDown();
                }
            });*/


        }

//        countDownLatch.await(5, TimeUnit.SECONDS);
        producer.close();
    }
}

消费者代码以及参数详解


public class MsgConsumer {
    private final static String TOPIC_NAME = "my-replicated-topic-1";
    private final static String CONSUMER_GROUP_NAME = "testGroup";

    public static void main(String[] args) throws Exception {
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094");
        // 消费分组名
        props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
        // 是否自动提交offset,默认就是true
        /*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
        // 自动提交offset的间隔时间
        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");*/
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
        /*
        当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费
        latest(默认) :只消费自己启动之后发送到主题的消息
        earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
        */
        //props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
		/*
		consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将
		rebalance方案下发给consumer,这个时间可以稍微短一点
		*/
        props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
        /*
        服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,
        对应的Partition也会被重新分配给其他consumer,默认是10秒
        */
        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);


        //一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50);
        /*
        如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
        会将其踢出消费组,将分区分配给别的consumer消费
        */
        props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);

        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);

        consumer.subscribe(Arrays.asList(TOPIC_NAME));
        // 消费指定分区
        //consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));

        //消息回溯消费
        /*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
        consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*/

        //指定offset消费
        /*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
        consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*/

        //从指定时间点开始消费

        /*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
        //从1小时前开始消费
        long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
        Map<TopicPartition, Long> map = new HashMap<>();
        for (PartitionInfo par : topicPartitions) {
            map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);
        }
        Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
        for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
            TopicPartition key = entry.getKey();
            OffsetAndTimestamp value = entry.getValue();
            if (key == null || value == null) continue;
            Long offset = value.offset();
            System.out.println("partition-" + key.partition() + "|offset-" + offset);
            System.out.println();
            //根据消费里的timestamp确定offset
            if (value != null) {
                consumer.assign(Arrays.asList(key));
                consumer.seek(key, offset);
            }
        }*/


        while (true) {
            /*
             * poll() API 是拉取消息的长轮询
             */
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
                        record.offset(), record.key(), record.value());
            }

            if (records.count() > 0) {
                // 手动同步提交offset,当前线程会阻塞直到offset提交成功
                // 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
                consumer.commitSync();

                // 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
                /*consumer.commitAsync(new OffsetCommitCallback() {
                    @Override
                    public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
                        if (exception != null) {
                            System.err.println("Commit failed for " + offsets);
                            System.err.println("Commit failed exception: " + exception.getStackTrace());
                        }
                    }
                });*/

            }
        }
    }
}

  1. 实体类

public class Order {

    private Integer orderId;
    private Integer productId;
    private Integer productNum;
    private Double orderAmount;

    public Order() {
    }

    public Order(Integer orderId, Integer productId, Integer productNum, Double orderAmount) {
        super();
        this.orderId = orderId;
        this.productId = productId;
        this.productNum = productNum;
        this.orderAmount = orderAmount;
    }

    public Integer getOrderId() {
        return orderId;
    }

    public void setOrderId(Integer orderId) {
        this.orderId = orderId;
    }

    public Integer getProductId() {
        return productId;
    }

    public void setProductId(Integer productId) {
        this.productId = productId;
    }

    public Integer getProductNum() {
        return productNum;
    }

    public void setProductNum(Integer productNum) {
        this.productNum = productNum;
    }

    public Double getOrderAmount() {
        return orderAmount;
    }

    public void setOrderAmount(Double orderAmount) {
        this.orderAmount = orderAmount;
    }
}

二、整合springboot实战

  1. 引入基本依赖

	<dependencies>
		<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
		    <groupId>org.springframework.kafka</groupId>
		    <artifactId>spring-kafka</artifactId>
		</dependency>
	  </dependencies>
  1. 配置application.yml
server:
  port: 8080

spring:
  kafka:
    bootstrap-servers: 192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094
    producer: # 生产者
      retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
      batch-size: 16384
      buffer-memory: 33554432
      acks: 1
      # 指定消息key和消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: default-group
      enable-auto-commit: false
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    listener:
      # 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
      # RECORD
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交
      # BATCH
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交
      # TIME
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交
      # COUNT
      # TIME | COUNT 有一个条件满足时提交
      # COUNT_TIME
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交
      # MANUAL
      # 手动调用Acknowledgment.acknowledge()后立即提交
      # MANUAL_IMMEDIATE
      ack-mode: MANUAL_IMMEDIATE

当配置ack-mode: MANUAL_IMMEDIATE时,需要手动在消费者提交offset,否则会一直重复消费

  1. 消费者

@Component
public class MyConsumer {

    /**
     * @KafkaListener(groupId = "testGroup", topicPartitions = {
     *             @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
     *             @TopicPartition(topic = "topic2", partitions = "0",
     *                     partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
     *     },concurrency = "6")
     *  //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
     * @param record
     */
    @KafkaListener(topics = "my-replicated-topic",groupId = "testGroup")
    public void listenZhugeGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
        String value = record.value();
        System.out.println(value);
        System.out.println(record);
        //手动提交offset
        ack.acknowledge();
    }
    }
  1. 测试,访问生产者控制层,可以自动监听到消费者
    在这里插入图片描述

二、Kafka设计原理详解(面试常问,不影响实际开发)

在这里插入图片描述
Kafka核心总控制器Controller
在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。

  • 当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
  • 当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
  • 当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责让新分区被其他节点感知到。

Controller选举机制
在kafka集群启动的时候,会自动选举一台broker作为controller来管理整个集群,选举的过程是集群中每个broker都会尝试在zookeeper上创建一个 /controller 临时节点,zookeeper会保证有且仅有一个broker能创建成功,这个broker就会成为集群的总控器controller。
查看zookeeper,发现我的1服务器是控制器
当这个controller角色的broker宕机了,此时zookeeper临时节点会消失,集群里其他broker会一直监听这个临时节点,发现临时节点消失了,就竞争再次创建临时节点,就是我们上面说的选举机制,zookeeper又会保证有一个broker成为新的controller。
具备控制器身份的broker需要比其他普通的broker多一份职责,具体细节如下:

  1. 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。
  2. 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
  3. 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。
  4. 更新集群的元数据信息,同步到其他普通的broker节点中。
    总结来说:就是监听其他服务器的情况,监听topic的情况,监听分区partition的情况,监听元数据

Partition副本选举Leader机制
kafka有两个选举,上面那个是选举整个集群的控制器,和这个选取单个分区Partition的Leader不是一回事,不要混淆!!!

  • controller感知到分区leader所在的broker挂了(controller监听了很多zk节点可以感知到broker存活),controller会从ISR列表(参数unclean.leader.election.enable=false的前提下)里挑第一个broker作为leader(第一个broker最先放进ISR列表,可能是同步数据最多的副本)
  • 如果参数unclean.leader.election.enable为true,代表在ISR列表里所有副本都挂了的时候可以在ISR列表以外的副本中选leader,这种设置,可以提高可用性,但是选出的新leader有可能数据少很多。

副本进入ISR列表有两个条件:

  1. 副本节点不能产生网络分区,必须能与zookeeper保持会话以及跟leader副本网络连通
  2. 副本能复制leader上的所有写操作,并且不能落后太多。(与leader副本同步滞后的副本,是由 replica.lag.time.max.ms 配置决定的,超过这个时间都没有跟leader同步过的一次的副本会被移出ISR列表)

消费者消费消息的offset记录机制
每个consumer会定期将自己消费分区的offset提交给kafka内部topic:__consumer_offsets,提交过去的时候,key是consumerGroupId+topic+分区号,value就是当前offset的值,kafka会定期清理topic里的消息,最后就保留最新的那条数据

因为__consumer_offsets可能会接收高并发的请求,kafka默认给其分配50个分区(可以通过offsets.topic.num.partitions设置),这样可以通过加机器的方式抗大并发。

通过如下公式可以选出consumer消费的offset要提交到__consumer_offsets的哪个分区

公式:hash(consumerGroupId) % __consumer_offsets主题的分区数

消费者Rebalance分区分配策略:
主要有三种rebalance的策略:range、round-robin、sticky。
Kafka 提供了消费者客户端参数partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。默认情况为range分配策略。
假设一个主题有10个分区(0-9),现在有三个consumer消费:
range策略就是按照分区序号排序,假设 n=分区数/消费者数量 = 3, m=分区数%消费者数量 = 1,那么前 m 个消费者每个分配 n+1 个分区,后面的(消费者数量-m )个消费者每个分配 n 个分区。
比如分区0-3给一个consumer,分区4-6给一个consumer,分区7-9给一个consumer。

round-robin策略就是轮询分配,比如分区0、3、6、9给一个consumer,分区1、4、7给一个consumer,分区2、5、8给一个consumer

sticky策略初始时分配策略与round-robin类似,但是在rebalance的时候,需要保证如下两个原则。
1)分区的分配要尽可能均匀 。
2)分区的分配尽可能与上次分配的保持相同。
当两者发生冲突时,第一个目标优先于第二个目标 。这样可以最大程度维持原来的分区分配的策略。
比如对于第一种range情况的分配,如果第三个consumer挂了,那么重新用sticky策略分配的结果如下:
consumer1除了原有的0~3,会再分配一个7
consumer2除了原有的4~6,会再分配8和9

Rebalance过程如下
当有消费者加入消费组时,消费者、消费组及组协调器之间会经历以下几个阶段。
在这里插入图片描述
第一阶段:选择组协调器
组协调器GroupCoordinator:每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance。
consumer group中的每个consumer启动时会向kafka集群中的某个节点发送 FindCoordinatorRequest 请求来查找对应的组协调器GroupCoordinator,并跟其建立网络连接。
组协调器选择方式:
consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker就是这个consumer group的coordinator

第二阶段:加入消费组JOIN GROUP
在成功找到消费组所对应的 GroupCoordinator 之后就进入加入消费组的阶段,在此阶段的消费者会向 GroupCoordinator 发送 JoinGroupRequest 请求,并处理响应。然后GroupCoordinator 从一个consumer group中选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。

第三阶段( SYNC GROUP)
consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。

producer发布消息机制剖析
1、写入方式
producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。
2、消息路由
producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:

  1. 指定了 patition,则直接使用;
  2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
  3. patition 和 key 都未指定,使用轮询选出一个 patition。

3、写入流程
在这里插入图片描述

producer 先从 zookeeper 的 “/brokers/…/state” 节点找到该 partition 的 leader
producer 将消息发送给该 leader
leader 将消息写入本地 log
followers 从 leader pull 消息,写入本地 log 后 向leader 发送 ACK
leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

HW与LEO详解

HW俗称高水位,HighWatermark的缩写,取一个partition对应的ISR中最小的LEO(log-end-offset)作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follower各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部broker的读取请求,没有HW的限制。
在这里插入图片描述
由此可见,Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower都复制完,这条消息才会被commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follower都还没有复制完,落后于leader时,突然leader宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。再回顾下消息发送端对发出消息持久化机制参数acks的设置,我们结合HW和LEO来看下acks=1的情况
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/38189.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于 jmeter 和 shell 的接口性能自动化

目录 前言&#xff1a; 1. 总体需求 2. 实现流程 3.准备工作 4.具体实现 4.1 用例执行 主流程脚本 4.2 服务器监控 监控脚本&#xff1a; 服务器监控脚本 4.3 生成 html 报告 html 样式表 发邮件脚本 前言&#xff1a; 基于JMeter和Shell的接口性能自动化是一种有…

一起学SF框架系列5.7-模块Beans-BeanDefinition使用

SF如何使用BeanDefinition达成其目标IoC&#xff0c;我们通过跟踪BeanDefinition使用来了解。 使用起点 跟踪SF初始化过程&#xff0c;第一个点在&#xff1a;DefaultListableBeanFactory.preInstantiateSingletons。如下图&#xff1a; RootBeanDefinition是运行时Spring B…

(16)燃油流量和液位传感器

文章目录 前言 16.1 燃油流量传感器 16.1.1 连接到自动驾驶仪 16.2 燃油液位传感器 16.2.1 PWM油位传感器 16.2.2 模拟油位传感器 前言 在 4.0 及以后的固件版本中&#xff0c;ArduPilot 提供了使用燃油流量和液位传感器的能力&#xff0c;此外还有电池监控器。支持脉冲输…

安装Ceph集群

安装Ceph集群 环境准备 CentOS 7.6 主机名IPRoleadmin192.168.182.128adminnode1192.168.182.129mon/mgr/osdnode2192.168.182.130osdnode3192.168.182.131osdclient192.168.182.132 所有节点修改主机名相互解析三台node节点添加大小5G以上硬盘关闭所有节点防火墙与SeLinux所…

jenkins 关闭关闭CSRF Protection(跨站请求伪造保护)

jenkins版本 我的jenkins版本是&#xff1a;2.332.4 背景 Jenkins版本自2.204.6以来的重大变更有&#xff1a;删除禁用 CSRF 保护的功能。 从较旧版本的 Jenkins 升级的实例将启用 CSRF 保护和设置默认的发行者&#xff0c;如果之前被禁用。 解决方法 老版本Jenkins的CSRF…

亚马逊云科技,迈向十年新进阶

编辑&#xff1a;阿冒 设计&#xff1a;沐由 自2013年进入国内至今&#xff0c;亚马逊云科技见证了中国数字经济开启量质齐升的十年。在这十年里&#xff0c;亚马逊云科技持续不断地帮助广大中国企业实现上云重塑和云上创新。 从一间公司的时间节点而言&#xff0c;无论是中文的…

mac批量修改文件名为不同名字

mac批量修改文件名为不同名字怎么弄&#xff1f;很多小伙伴通过私信向我求助&#xff0c;用什么方法可以在mac电脑上批量修改文件名称&#xff0c;将大量文件修改成不同的名称。这可能是一项比较麻烦的操作&#xff0c;在电脑上进行过批量重命名的小伙伴都知道&#xff0c;一般…

达梦sql执行计划、HINT、索引简单应用

目录 收集统计信息. 3 1. 通过DBMS_STATS包中的方法. 3 2、删除指定表的统计信息. 3 执行计划. 3 常用执行计划操作符. 4 统计指定sql执行号的所有操作符的执行时间. 5 HINT 5 并行操作&#xff1a;. 6 查询计划重用、结果集重用. 7 示例. 8 1、收集统计信息&#x…

上手vue2的学习笔记5之在vue2项目中调用elment-ui

前言 上手vue2的学习笔记4之搭建vue环境 参考链接&#xff1a;vue2.0项目引入element-ui 一、安装elment-ui 进入搭建的vue项目中 cd vue_bing_test 安装 element npm i element-ui二、引入elment-ui elment官方教程 将main.js改成如下内容&#xff1a; import Vue fro…

Proxy代理前后,Httpheader 的变化

Vite.config 配置Proxy服务器, 解决Rest API 访问SpringBoot接口时&#xff0c;跨域的Session一致性。 import { defineConfig, loadEnv } from viteexport default defineConfig({server: {proxy: {/rest: {target: loadEnv(, process.cwd()).VITE_API_URL,changeOrigin: tru…

argparse 模块参数

官方文档&#xff1a;https://docs.python.org/3.7/library/argparse.html 示例 def parse_config():parser argparse.ArgumentParser(descriptionarg parser) # 创建一个 ​​ArgumentParser​​ 对象(parser)parser.add_argument(--cfg_file, typestr, defaultNone, hel…

[相遇 Bug] - ImportError: numpy.core.multiarray failed to import

背景: 因为最近在看点云模型, 在自己的环境上部署该项目: https://github.com/open-mmlab/OpenPCDet/tree/master 执行命令: 这里执行github项目给的demo.py文件, 命令格式如下: python demo.py --cfg_file cfgs/kitti_models/pointpillar.yaml --ckpt xxx/pointpillar_772…

WPF Prims框架详解

文章目录 前言Prism基本使用Prism选择&#xff0c;DryIoc还是UnityPrism基本框架搭建Prism动态更新View和ViewModel对应关系参数动态更新函数动态绑定 prism新建项目模板region使用事例测试是否限制空间 消息订阅如何使用消息订阅使用建议 路由导航对话框/弹窗功能实现代码 前言…

Element分页组件自定义样式

样式效果 页面代码 <el-paginationsize-change"handleSizeChange"current-change"handleCurrentChange":current-page"page.page":page-sizes"[10, 20, 30, 40]":page-size"page.size"layout"total, sizes, prev, …

HTML <map> 标签

实例 带有可点击区域的图像映射: <img src="planets.jpg" border="0" usemap="#planetmap" alt="Planets" /><map name="planetmap" id="planetmap"><area shape="circle" coords=&q…

Spring Boot 中的 @Field 注解详解

Spring Boot 中的 Field 注解详解 引言 Spring Boot 是目前 Java 生态圈中最受欢迎的 Web 应用开发框架之一&#xff0c;它提供了很多优秀的功能和工具&#xff0c;可以帮助开发者快速构建高效、可靠的 Web 应用程序。其中一个重要的功能就是数据绑定和验证&#xff0c;Sprin…

(阿里云)STM32L+BC20+MQTT协议传输温湿度,ADC,电压,GPS数据到阿里云物联网平台

1、材料准备 准备以下材料 2、设备连接 2.1 插入物联网卡 首先把BC20核心板从开发板上拆下来 然后将物联卡放置在BC20核心板内 物联卡放置完成将BC20核心板重新插入到开发板内&#xff08;注意不要弄错方向&#xff09; 同时接入天线 2.2 连接ST-Link仿真器 用3条杜邦线接…

DP485替代MAX485 RS485/RS422 收发器芯片

DP485E 是一款 5V 供电、半双工、低功耗、低摆率&#xff0c;完全满足 TIA/EIA-485 标准要求的 RS-485收发器。DP485E 工作电压范围为 4.75~5.25V&#xff0c;具备失效安全&#xff08;fail-safe&#xff09;、过温保护、限流保护、过压保护&#xff0c;控制端口热插拔输入等功…

飞行动力学 - 第10节-空间机动性、稳定性与操纵性概述 之 基础点摘要

飞行动力学 - 第10节-空间机动性、稳定性与操纵性概述 之 基础点摘要 1. 协调盘旋性能计算流程2. 一般盘旋2.1 动力学方程2.2 角点速度2.3 典型战斗机盘旋曲线 3. 空间机动能力4. 飞行动力学&#xff1a;飞行性能稳定性与操纵性5. 稳定性定义6. 飞行品质6.1 品质等级6.2 品质评…

从字节出来的测试总监,让我们用这份《测试用例规范》,再也没加班过。

经常看到无论是刚入职场的新人&#xff0c;还是工作了一段时间的老人&#xff0c;都会对编写测试用例感到困扰&#xff1f;例如&#xff1a; 固然&#xff0c;编写一份好的测试用例需要&#xff1a;充分的需求分析能力 理论及经验加持&#xff0c;作为测试职场摸爬打滚的老人&…
最新文章