【项目日记(九)】项目整体测试,优化以及缺陷分析

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:项目日记-高并发内存池⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你做项目
  🔝🔝
开发环境: Visual Studio 2022


在这里插入图片描述

项目日记

  • 1. 前言
  • 2. 整体项目测试
  • 3. 项目的效率上限分析
  • 4. 效率上限问题的解决方法
  • 5. 项目的缺陷分析
  • 6. 项目总结

1. 前言

整个项目的代码和框架就已经介绍
完毕了,项目的所有代码在下面的链接:

gitee代码仓库项目源代码

本章重点:

本篇文章着重讲解本项目是如何测试的,
以及本代码的一些效率上限问题,最后会
引入基数树来对项目整体做优化


2. 整体项目测试

对本项目的测试无非就是将自己写的
内存池与C语言的malloc做对比,代码如下:

#include<cstdio>
#include<iostream>
#include<vector>
#include<thread>
#include<mutex>
#include"ConcurrentAlloc.h"
using namespace std;
void BenchmarkMalloc(size_t ntimes, size_t nworks, size_t rounds)//ntime一轮申请和释放内存的次数,round是跑多少轮,nworks是线程数
{
	std::vector<std::thread> vthread(nworks);
	std::atomic<size_t> malloc_costtime = 0;
	std::atomic<size_t> free_costtime = 0;
	for (size_t k = 0; k < nworks; ++k)
	{
		vthread[k] = std::thread([&, k]() {
			std::vector<void*> v;
			v.reserve(ntimes);
			for (size_t j = 0; j < rounds; ++j)
			{
				size_t begin1 = clock();
				for (size_t i = 0; i < ntimes; i++)
				{
					//v.push_back(malloc(16));
					v.push_back(malloc((16 + i) % 8192 + 1));
				}
				size_t end1 = clock();
				size_t begin2 = clock();
				for (size_t i = 0; i < ntimes; i++)
				{
					free(v[i]);
				}
				size_t end2 = clock();
				v.clear();
				malloc_costtime += (end1 - begin1);
				free_costtime += (end2 - begin2);
			}
			});
	}
	for (auto& t : vthread)
	{
		t.join();
	}
	printf("%u个线程并发执行%u轮次,每轮次malloc %u次: 花费:%u ms\n",
		nworks, rounds, ntimes, malloc_costtime.load());
	printf("%u个线程并发执行%u轮次,每轮次free %u次: 花费:%u ms\n",
		nworks, rounds, ntimes, free_costtime.load());
	printf("%u个线程并发malloc&free %u次,总计花费:%u ms\n",
		nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}

// 单轮次申请释放次数 线程数 轮次
void BenchmarkConcurrentMalloc(size_t ntimes, size_t nworks, size_t rounds)
{
	std::vector<std::thread> vthread(nworks);
	std::atomic<size_t> malloc_costtime = 0;
	std::atomic<size_t> free_costtime = 0;
	for (size_t k = 0; k < nworks; ++k)
	{
		vthread[k] = std::thread([&]() {
			std::vector<void*> v;
			v.reserve(ntimes);
			for (size_t j = 0; j < rounds; ++j)
			{
				size_t begin1 = clock();
				for (size_t i = 0; i < ntimes; i++)
				{
					//v.push_back(ConcurrentAlloc(16));
					v.push_back(ConcurrentAlloc((16 + i) % 8192 + 1));
				}
				size_t end1 = clock();
				size_t begin2 = clock();
				for (size_t i = 0; i < ntimes; i++)
				{
					ConcurrentFree(v[i]);
				}
				size_t end2 = clock();
				v.clear();
				malloc_costtime += (end1 - begin1);
				free_costtime += (end2 - begin2);
			}
			});
	}
	for (auto& t : vthread)
	{
		t.join();
	}
	printf("%u个线程并发执行%u轮次,每轮次concurrent alloc %u次: 花费:%u ms\n",
		nworks, rounds, ntimes, malloc_costtime.load());
	printf("%u个线程并发执行%u轮次,每轮次concurrent dealloc %u次: 花费:%u ms\n",
		nworks, rounds, ntimes, free_costtime.load());
	printf("%u个线程并发concurrent alloc&dealloc %u次,总计花费:%u ms\n",
		nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}
int main()
{
	size_t n = 10000;
	cout << "==========================================================" << endl;
	BenchmarkConcurrentMalloc(n, 10, 10);
	cout << endl << endl;
	BenchmarkMalloc(n, 10, 10);
	cout << "==========================================================" <<endl;
	return 0;
}

本代码是现成的,不用在意细节

当我们运行代码后会发现,为什么我们自己写的内存池的效率比不上C语言中的malloc函数,这一点显然超出了我们的预期,下面就来分析一下项目的效率上限问题

在这里插入图片描述


3. 项目的效率上限分析

在vs的调试中有一个性能探测器

在这里插入图片描述

我们可以使用这个功能来分析哪个步骤比较用时,当我们完成检测后会发现,在pagecache文件中的函数耗时都比较久,其实我们隐约已经知道问题出现在哪里了,我们知道unordered_map的底层是哈希桶结构,然而find函数会将每一个桶中的链表都遍历一遍,直到找到了对应的key值,很明显这个查找的过程是比较费时的,并且如果不切换一个容器来代替unordered_map的话,在这个基础上不管怎样去优化都不会有质的提升!!!


4. 效率上限问题的解决方法

对于上面的问题显然超出了我们的能力范围,对于一个C++的初学者来说,标准库中的容器已经是很优秀的了,如果要抛弃标准库,我们也不能写出更好的,所以这里直接将TCmalloc开源项目中的解决方法给搬过来,谷歌的团队使用了一个叫基数树的结构来完美的解决此问题

基数树的文档说明: 基数树百度百科

由于基数树属于此项目的拓展内容,所以这里就不详细介绍了,完美直接把代码搬出来用就可以了!

#pragma once
#include"shared.h"
// Single-level array
template <int BITS>
class TCMalloc_PageMap1 {
private:
	static const int LENGTH = 1 << BITS;
	void** array_;

public:
	typedef uintptr_t Number;

	//explicit TCMalloc_PageMap1(void* (*allocator)(size_t)) {
	explicit TCMalloc_PageMap1() {
		//array_ = reinterpret_cast<void**>((*allocator)(sizeof(void*) << BITS));
		size_t size = sizeof(void*) << BITS;
		size_t alignSize = AlignmentRule::_AlignUp(size, 1 << PAGE_SHIFT);
		array_ = (void**)SystemAlloc(alignSize >> PAGE_SHIFT);
		memset(array_, 0, sizeof(void*) << BITS);
	}

	// Return the current value for KEY.  Returns NULL if not yet set,
	// or if k is out of range.
	void* get(Number k) const {
		if ((k >> BITS) > 0) {
			return NULL;
		}
		return array_[k];
	}

	// REQUIRES "k" is in range "[0,2^BITS-1]".
	// REQUIRES "k" has been ensured before.
	// Sets the value 'v' for key 'k'.
	void set(Number k, void* v) {
		array_[k] = v;
	}
};

之后将所有使用unordered_map的地方都替换成基数树的get和set函数即可!现在我们再来测试一下整个项目的性能如何:

在这里插入图片描述

使用基数树后,整个效率就比malloc快了!

在这里插入图片描述


5. 项目的缺陷分析

本项目看似每一步都做的天衣无缝,申请
和释放内存一层一层不断递进,但是它有
一个致命的缺陷,那就是内存泄漏问题:

bug出现的情景:

假设线程缓存的K号桶中有10个小块儿内存挂在桶上,此时K号桶向中心缓存申请的小块儿内存个数是7个,小于了桶中小块儿内存的个数,此时会将线程缓存中的7个小块儿内存还给中心缓存,那么也就还剩下三个小块儿内存在桶中没有被还回去,此时如果没有线程来这个桶中申请或释放内存,那么这三块儿内存就会一直挂在桶上,既无法释放它,又失去了对它的控制从而造成内存泄漏!

解决bug的方式:

博主本人比较推荐的方式就是在每次使用完内存池后,手动调用一个释放内存的函数对每一个桶进行遍历,来释放还没有被使用的小块儿内存


6. 项目总结

高并发内存池项目到这里就结项了,
三层缓存结构设计的非常之巧妙,做
这个项目为了去解决某个问题,而是
去学习别人的优秀的,先进的思想

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/384875.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Gateway 网关路由

一、路由断言 路由断言就是判断路由转发的规则 二、路由过滤器 1. 路由过滤器可以实现对网关请求的处理&#xff0c;可以使用 Gateway 提供的&#xff0c;也可以自定义过滤器 2. 路由过滤器 GatewayFilter&#xff08;默认不生效&#xff0c;只有配置到路由后才会生效&#x…

无人机飞行原理,多旋翼无人机飞行原理详解

多旋翼无人机升空飞行的首要条件是动力&#xff0c;有了动力才能驱动旋粪旋转&#xff0c;才能产生克服重力所必需的升力。使旋翼产生升力&#xff0c;进而推动多旋翼无人机升空飞行的一套设备装置称为动力装置&#xff0c;包括多旋翼无人机的发动机以及保证发动机正常工作所必…

LibreOffice Calc 取消首字母自动大写 (Capitalize first letter of every sentence)

LibreOffice Calc 取消首字母自动大写 [Capitalize first letter of every sentence] 1. Tools -> AutoCorrect Options2. AutoCorrect -> Options -> Capitalize first letter of every sentenceReferences 1. Tools -> AutoCorrect Options 2. AutoCorrect ->…

论文介绍 One-step Diffusion 只需单步扩散生成!

论文介绍 One-step Diffusion with Distribution Matching Distillation 关注微信公众号: DeepGo 源码地址&#xff1a; https://tianweiy.github.io/dmd/ 论文地址&#xff1a; https://arxiv.org/abs/2311.18828 这篇论文介绍了一种新的图像生成方法&#xff0c;名为分布匹配…

C++三剑客之std::optional(一) : 使用详解

相关文章系列 C三剑客之std::optional(一) : 使用详解 C三剑客之std::any(一) : 使用 C之std::tuple(一) : 使用精讲(全) C三剑客之std::variant(一) : 使用 C三剑客之std::variant(二)&#xff1a;深入剖析 目录 1.概述 2.构建方式 2.1.默认构造 2.2.移动构造 2.3.拷贝构…

前端vue 数字 字符串 丢失精度问题

1.问题 后端返回的数据 是这样的 一个字符串类型的数据 前端要想显示这个 肯定需要使用Json.parse() 转换一下 但是 目前有一个问题 转换的确可以 showId:1206381711026823172 有一个这样的字段 转换了以后 发现 字段成了1206381711026823200 精度直接丢了 原本的数据…

假期作业 8

1、若有以下说明语句&#xff1a;int a[12]{1,2,3,4,5,6,7,8,9,10,11,12};char c’a’,d,g;则数值为4的表达式是&#xff08; B&#xff09;。 A&#xff09;a[g-c] B&#xff09;a[4] C&#xff09;a[‘d’-‘c’] D&#xff09;a[‘d’-c] 2、假…

【C++ 02】类和对象 1:初识类和对象

文章目录 &#x1f308; Ⅰ 面向对象介绍&#x1f308; Ⅱ 类的引入&#x1f308; Ⅲ 类的定义格式1. 声明和定义不分离2. 声明和定义分离 &#x1f308; Ⅳ 类的访问限定符&#x1f308; Ⅴ 类的作用域&#x1f308; Ⅵ 类的实例化&#x1f308; Ⅶ this 指针 &#x1f308; Ⅰ…

【Java程序设计】【C00254】基于Springboot的java学习平台(有论文)

基于Springboot的java学习平台&#xff08;有论文&#xff09;&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的学习平台 本系统分为系统功能模块、管理员功能模块、教师功能模块以及学生功能模块。 系统功能模块&#xff1a;在平台…

LLM大模型常见问题解答(3)

简要描述下列概念在大语言模型中的作用 Transformer 架构Attention 机制预训练与微调过拟合和欠拟合 Transformer 架构 Transformer是一种基于自注意力机制的深度学习模型&#xff0c;它在论文“Attention Is All You Need”中首次提出。与此前流行的循环神经网络&#xff0…

第四节 zookeeper集群与分布式锁

目录 1. Zookeeper集群操作 1.1 客户端操作zk集群 1.2 模拟集群异常操作 1.3 curate客户端连接zookeeper集群 2. Zookeeper实战案例 2.1 创建项目引入依赖 2.2 获取zk客户端对象 2.3 常用API 2.4 客户端向服务端写入数据流程 2.5 服务器动态上下线、客户端动态监听 2…

力扣题目训练(8)

2024年2月1日力扣题目训练 2024年2月1日力扣题目训练404. 左叶子之和405. 数字转换为十六进制数409. 最长回文串116. 填充每个节点的下一个右侧节点指针120. 三角形最小路径和60. 排列序列 2024年2月1日力扣题目训练 2024年2月1日第八天编程训练&#xff0c;今天主要是进行一些…

AcWing 802. 区间和 离散化

文章目录 题目链接题目描述解题思路代码实现总结 题目链接 链接: AcWing 802. 区间和 题目描述 解题思路 离散化是一种常用的技巧&#xff0c;它能够将原始的连续数值转换为一组离散的值&#xff0c;从而简化问题的处理。在这段代码中&#xff0c;离散化的过程主要分为三个步…

探索Nginx:强大的开源Web服务器与反向代理

一、引言 随着互联网的飞速发展&#xff0c;Web服务器在现代技术架构中扮演着至关重要的角色。Nginx&#xff08;发音为“engine x”&#xff09;是一个高性能的HTTP和反向代理服务器&#xff0c;也是一个IMAP/POP3/SMTP代理服务器。Nginx因其卓越的性能、稳定性和灵活性&…

02.数据结构

一、链表 作用&#xff1a;用于写邻接表&#xff1b; 邻接表作用&#xff1a;用于存储图或树&#xff1b; 1、用数组模拟单链表 #include<iostream> using namespace std;const int N 100010;// head 表示头结点的下标 // e[i] 表示结点i的值 // ne[i] 表示结点i的ne…

前端工程化面试题 | 08.精选前端工程化高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

DS Wannabe之5-AM Project: DS 30day int prep day14

Q1. What is Autoencoder? 自编码器是什么&#xff1f; 自编码器是一种特殊类型的神经网络&#xff0c;它通过无监督学习尝试复现其输入数据。它通常包含两部分&#xff1a;编码器和解码器。编码器压缩输入数据成为一个低维度的中间表示&#xff0c;解码器则从这个中间表示重…

CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

正文共&#xff1a;1333 字 21 图&#xff0c;预估阅读时间&#xff1a;2 分钟 上次我们在Windows上尝试用Tesla M4配置深度学习环境&#xff08;TensorFlow识别GPU难道就这么难吗&#xff1f;还是我的GPU有问题&#xff1f;&#xff09;&#xff0c;但是失败了。考虑到Windows…

BIO、NIO、Netty演化总结

关于BIO&#xff08;关于Java NIO的的思考-CSDN博客&#xff09;和NIO&#xff08;关于Java NIO的的思考-CSDN博客&#xff09;在之前的博客里面已经有详细的讲解&#xff0c;这里再总结一下最近学习netty源码的的心得体会 在之前的NIO博客中我们知道接受客户端连接和IO事件的…

Vulnhub靶机:hacksudo-ProximaCentauri

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;10.0.2.15&#xff09; 靶机&#xff1a;hacksudo-ProximaCentauri&#xff08;10.0.2.51&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://www.vulnhu…
最新文章