【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-卷积码原理

目录

一、引言

二、卷积编码的发展历史

2.1 卷积码的起源

2.2 主要发展阶段

2.3 重要里程碑

三、卷积编码的基本概念

3.1 基本定义

3.2 编码器框图

3.3 编码多项式

3.4 网格图(Trellis)描述

四、MATLAB示例


一、引言

卷积编码,作为数字通信领域中的一项关键技术,自其诞生以来便受到广泛关注。卷积编码是一种纠错编码方法,它通过引入冗余信息来提高数据传输的可靠性。本文旨在全面介绍卷积编码的基本概念、原理、应用场景、优缺点等方面,并结合具体案例进行分析,以期为读者提供一个清晰、深入的卷积编码知识体系。

二、卷积编码的发展历史

2.1 卷积码的起源

卷积码,作为一种前向纠错编码技术,其历史可以追溯到20世纪50年代。当时,通信领域的研究者们正在探索如何在有限的带宽和信噪比条件下,提高数据传输的可靠性。卷积码的出现,为这一挑战提供了一种有效的解决方案。

2.2 主要发展阶段

  1. 早期研究阶段:在20世纪50年代末到60年代初,卷积码的概念开始形成并得到初步研究。研究者们开始探索卷积码的基本原理和性能特点,为其后续的应用奠定了基础。
  2. 理论成熟阶段:随着研究的深入,卷积码的理论体系逐渐成熟。在这一阶段,研究者们提出了卷积码的代数表示方法、状态转移图等关键理论工具,为卷积码的工程应用提供了理论基础。
  3. 工程应用阶段:从20世纪70年代开始,卷积码开始广泛应用于各种通信系统中。特别是在卫星通信、移动通信等领域,卷积码因其强大的纠错能力和较高的编码效率而备受青睐。

2.3 重要里程碑

  1. 1972年:Viterbi算法的出现为卷积码的高效解码提供了可能。Viterbi算法是一种最大似然解码算法,它能够在多项式时间内找到最可能的原始信息序列,从而大大提高了卷积码的解码效率。
  2. 1980年代:随着移动通信的快速发展,卷积码成为了第一代和第二代移动通信系统(如GSM)中的关键技术之一。在这一阶段,卷积码的优化和改进持续进行,以提高其在不同信道条件下的性能。
  3. 1990年代:随着第三代移动通信系统(如3G、4G)的兴起,卷积码逐渐被更为先进的编码技术(如Turbo码和LDPC码)所取代。然而,卷积码在某些特定场景(如深空通信、水下通信等)中仍具有重要地位。

三、卷积编码的基本概念

3.1 基本定义

卷积码将k个信息比特编成n个比特,特别适合以串行形式进行传输,时延小。

将卷积码记作(n,k,N)。一般来说,卷积码的k和n是比较小的整数。

  • 码率仍定义为k/n。
  • 卷积码是将k个比特的信息段编成n个比特的码组,其编码生成的监督码元不止和k个比特的信息段有关,还和前面的m=(N-1)个信息段有关。可知,一个监督码元同时和前m个比特以及当前输入的一个比特信息有关,即监督着N=m+1个比特,我们将N成为约束度,所有监督码元的长度nN称为约束长度。

综上,k即为卷积码的输入路数(多路输入要进行串并转换),n为输出比特个数,m为移位寄存器的位数(用于保存所需的前几个比特),N=m+1。

3.2 编码器框图

(n,k,N)=(3,1,3)卷积码编码器框图如下:

输入和输出的关系式:

(n,k,N)=(3,1,3)卷积码编码器框图如下:

输入和输出的关系式:

卷积编码的生成多项式是描述卷积编码器内部状态转移和输出码字生成的一组多项式。这些多项式通常表示为 (g(D)),其中 (D) 是一个延迟算子,表示数据在编码器中的延迟。生成多项式用于确定编码器的状态转移和输出码字的生成规则。

3.3 编码多项式

上面的编码器多项式如下:

假设输入序列x[k]=[1101],其多项式: ​​ 。则输出序列y[n]:

 

运算符号为位异或运算。

可以得到对应输入4个比特的输出数据为:[111,110,010,100];

根据上面的编码器图和输入输出关系式,可以看出来,卷积编码是一种前向纠错编码技术,其核心思想是将待传输的信息序列与特定的编码函数进行卷积运算,生成包含冗余信息的编码序列。卷积编码的主要参数包括约束长度(N)、编码速率(k/n)和生成多项式等,这些参数决定了编码的性能和特点。

3.4 网格图(Trellis)描述

卷积码的网格图表示如下:

网格图显示了时序的变化,可以更为清晰的显示出编码的过程。例如当输入(1101)时,假设移位寄存器的初始状态为a状态,则编码输出如红线所示。

四、MATLAB示例

以下是一个简单的MATLAB脚本示例,演示了如何实现一个(n,k,N)=(3,1,3) 的卷积编码器:

function encoded_data = convolutionalEncoder(input_data, K, g)  
    % 参数:  
    % input_data - 输入数据比特流 (1xN vector)  
    % K - 约束长度 (寄存器数量 + 1)  
    % g - 生成多项式的矩阵形式 (Gx(K-1) matrix, G是输出数量)  
    % 输出:  
    % encoded_data - 编码后的数据比特流 (1x(3*N) vector for R=1/3)  
  
    N = length(input_data); % 输入数据的长度  
    G = size(g, 1); % 输出数量 (对于R=1/3, G应为3)  
      
    % 初始化寄存器状态和输出数据  
    register = zeros(1, K-1);  
    encoded_data = zeros(1, N*G);  
      
    % 对输入数据进行卷积编码  
    for i = 1:N  
        % 构造当前寄存器的内容(包括新输入比特)  
        register_with_input = [input_data(i) register];  
          
        % 对每个生成多项式计算输出比特  
        for j = 1:G  
            % 提取对应的生成多项式  
            generator = g(j, :);  
            % 计算异或和  
            output_bit = mod(sum(generator .* register_with_input), 2);  
            % 将输出比特添加到编码后的数据中  
            encoded_data((i-1)*G + j) = output_bit;  
        end  
          
        % 更新寄存器状态  
        register = register_with_input(1:end-1);  
    end  
end  

% 示例使用  
% 定义生成多项式 (通常为八进制或十六进制形式, 这里转换为二进制)  
% 例如: g1 = [1 1 1], g2 = [1 0 1], g3 = [1 1 0] (八进制)  

g_binary = [1 0 0;1 0 1;1 1 1];

% 设置约束长度 (K=4 对于上述生成多项式)  
K = 3;  
  
% 输入数据比特流  
input_data = [1 1 0 1 ];  
  
% 进行卷积编码  
encoded_data = convolutionalEncoder(input_data, K, g_binary);  
  
% 显示编码后的数据  
disp('Encoded Data:');  
disp(encoded_data);

上面的程序已经通过调试,运行结果如下:

输入:

% 输入数据比特流

input_data = [1 1 0 1 ];

% 输出数据比特流

Encoded Data = [1 1 1 1 1 0 0 1 0 1 0 0];

大家可以试着运行一下,有问题可以留言。欢迎大家在评论区探讨。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/384916.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

快速学习Spring

Spring 简介 Spring 是一个开源的轻量级、非侵入式的 JavaEE 框架&#xff0c;它为企业级 Java 应用提供了全面的基础设施支持。Spring 的设计目标是简化企业应用的开发&#xff0c;并解决 Java 开发中常见的复杂性和低效率问题。 Spring常用依赖 <dependencies><!-…

java之Maven

1. maven Maven是管理和构建java项目的工具 项目依赖资源(jar包)的管理,避免版本冲突统一项目结构项目构建&#xff0c;标准跨平台(Linux,window,MacOS)的自动化项目管理 2.maven依赖仓库 2.maven安装 maven安装视频教程 3. IDEA集成Maven 4. maven的依赖范围 5. maven生命…

可视化大屏:工作要干的好,也要汇报好,不然资源为啥向你倾斜。

有些友友们感受不到可是大屏的价值&#xff0c;认为没啥作用&#xff0c;这就是典型的下层思维&#xff0c;格局小了。 估计也没有当过领导或者管理层。可视化大屏的其他价值放在一边不说&#xff0c;就单纯这个汇报价值就十分巨大&#xff0c;包括对内和对外的汇报。 如何让…

【51单片机】DS18B20(江科大)

一、DS18B20温度传感器 1.DS18B20介绍 DS18B20是一种常见的数字温度传感器,其控制命令和数据都是以数字信号的方式输入输出,相比较于模拟温度传感器,具有功能强大、硬件简单、易扩展、抗干扰性强等特点 测温范围 :- 55℃到125℃ 通信接口:1-Wire(单总线) 其它特征:可形成…

【lesson51】信号之信号处理

文章目录 信号处理可重入函数volatileSIGCHLD信号 信号处理 信号产生之后&#xff0c;信号可能无法被立即处理&#xff0c;一般在合适的时候处理。 1.在合适的时候处理&#xff08;是什么时候&#xff1f;&#xff09; 信号相关的数据字段都是在进程PCB内部。 而进程工作的状态…

【动态规划】【数学】【C++算法】1449. 数位成本和为目标值的最大数字

作者推荐 【深度优先搜索】【树】【图论】2973. 树中每个节点放置的金币数目 本文涉及知识点 动态规划汇总 LeetCode1449. 数位成本和为目标值的最大数字 给你一个整数数组 cost 和一个整数 target 。请你返回满足如下规则可以得到的 最大 整数&#xff1a; 给当前结果添加…

《UE5_C++多人TPS完整教程》学习笔记1 ——《P2 关于本课程(About This Course)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P2 关于本课程&#xff08;About This Course&#xff09;》 的学习笔记&#xff0c;该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版&#xff0c;UP主&#xff08;也是译者&…

使用 Windows 11/10 上的最佳 PDF 转 Word 转换器释放 PDF 的潜力

毫无疑问&#xff0c;PDF 是最好的文档格式之一&#xff0c;但就像其他格式一样&#xff0c;有时它们确实会带来一些限制。例如&#xff0c;在某些情况下&#xff0c;您可能想要将 PDF 转换为 Word。在这种情况下&#xff0c;您始终可以借助 PDF 到 Word 转换器的帮助。 为了说…

ChatGPT高效提问—prompt实践(生成VBA)

ChatGPT高效提问—prompt实践&#xff08;生成VBA&#xff09; 2. 生成VBA函数操作Excel ​ 当前Excel表格数据无背景颜色&#xff0c;区分不明显。假如我们想美化数据展示效果&#xff0c;把标题行设置为浅蓝色&#xff0c;其余奇数行设置为橙色&#xff0c;该怎么操作呢&am…

Spark MLlib

目录 一、Spark MLlib简介 &#xff08;一&#xff09;什么是机器学习 &#xff08;二&#xff09;基于大数据的机器学习 &#xff08;三&#xff09;Spark机器学习库MLlib 二、机器学习流水线 &#xff08;一&#xff09;机器学习流水线概念 &#xff08;二&#xff09…

【Java程序设计】【C00249】基于Springboot的私人健身与教练预约管理系统(有论文)

基于Springboot的私人健身与教练预约管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的私人健身与教练预约管理系统 本系统分为系统功能模块、管理员功能模块、教练功能模块以及用户功能模块。 系统功能模…

小白速成法:剖析一个Android项目以快速上手

这是一个基于Tasmota的设备、用MQTT协议来通信控制的安卓应用程序。支持ON/OFF命令插座和基本的RGB LED控制。 源码点击此处 只需要关注SmartController-main\app\src的代码 项目解压之后如图 只需要关注“app”文件夹里的东西即可&#xff0c;“gradle”是配置文件&#xf…

【国产MCU】-CH32V307-基本定时器(BCTM)

基本定时器(BCTM) 文章目录 基本定时器(BCTM)1、基本定时器(BCTM)介绍2、基本定时器驱动API介绍3、基本定时器使用实例CH32V307的基本定时器模块包含一个16 位可自动重装的定时器(TIM6和TIM7),用于计数和在更新新事件产生中断或DMA 请求。 本文将详细介绍如何使用CH32…

服务治理中间件-Eureka

目录 简介 搭建Eureka服务 注册服务到Eureka 简介 Eureka是Spring团队开发的服务治理中间件&#xff0c;可以轻松在项目中&#xff0c;实现服务的注册与发现&#xff0c;相比于阿里巴巴的Nacos、Apache基金会的Zookeeper&#xff0c;更加契合Spring项目&#xff0c;缺点就是…

unity 点击事件

目录 点击按钮&#xff0c;显示图片功能教程 第1步添加ui button&#xff0c;添加ui RawImage 第2步 添加脚本&#xff1a; 第3步&#xff0c;把脚本拖拽到button&#xff0c;点击button&#xff0c;设置脚本的变量&#xff0c; GameObject添加 Component组件 点击按钮&am…

在程序中使用日志功能

在应用中&#xff0c;需要记录程序运行过程中的一些关键信息以及异常输出等。这些信息用来排查程序故障或者其他用途。 日志模块可以自己实现或者是借用第三方库&#xff0c;之前写过一个类似的使用Qt的打印重定向将打印输出到文件&#xff1a;Qt将打印信息输出到文件_qt log输…

随机过程及应用学习笔记(二)随机过程的基本概念

随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。 目录 前言 一、随机过程的定义及分类 1、定义 2、分类 二、随机过程的分布及其数字特征 1、分布函数 2、数字特征 均值函数和方差函数 协方差函数和相关函数 3、互协方差函数与互相关函…

java微服务面试篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…

【MySQL进阶之路】详解执行计划 type 列

欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术的推送&#xff01; 在我后台回复 「资料」 可领取编程高频电子书&#xff01; 在我后台回复「面试」可领取硬核面试笔记&#xff01; 文章导读地址…

BUUCTF-Real-[Jupyter]notebook-rce

1、简介 Jupyter Notebook&#xff08;此前被称为 IPython notebook&#xff09;是一个交互式笔记本&#xff0c;支持运行 40 多种编程语言。 如果管理员未为Jupyter Notebook配置密码&#xff0c;将导致未授权访问漏洞&#xff0c;游客可在其中创建一个console并执行任意Pytho…
最新文章