机器学习---HMM前向、后向和维特比算法的计算

1. HMM

import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
    HMM.backward(Q, V, A, B, O, PI)
#     HMM.viterbi(Q, V, A, B, O, PI)

隐马尔可夫模型是一个统计模型,用于描述由隐藏的状态序列和对应的观测序列组成的系统。在这

个模型中,隐藏的状态是无法直接观测到的,而只能通过观测序列来进行推断。

前向算法(Forward Algorithm):前向算法用于计算在给定观测序列下每个时间步长处于特定状态

的概率。前向算法利用动态规划的思想,通过递推计算每个时间步的前向概率。前向概率

(alpha)的计算公式为:alpha[t][j] = sum(alpha[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

其中,alpha[t][j]表示在时间步t处于状态j的概率,A[i][j]表示从状态i转移到状态j的概率,B[j]

[O[t]]表示在状态j下观测到序列中的第t个观测的概率。

后向算法(Backward Algorithm):后向算法用于计算在给定观测序列下每个时间步从特定状态开始

的概率。后向算法同样利用动态规划的思想,通过递推计算每个时间步的后向概率。后向概率

(beta)的计算公式为: beta[t][i] = sum(A[i][j] * B[j][O[t+1]] * beta[t+1][j]) for j in range(N),其

中,beta[t][i]表示在时间步t从状态i开始的概率,A[i][j]表示从状态i转移到状态j的概率,B[j][O[t+1]]

表示在状态j下观测到序列中的第t+1个观测的概率,beta[t+1][j]表示在时间步t+1处于状态j的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到在给定观测序列下最可能的隐藏状态序列。

维特比算法利用动态规划的思想,通过递推计算每个时间步的最大概率和对应的状态。维特比算法

中使用的两个变量是delta和psi,分别表示到达某个状态的最大概率和之前的最优状态。 delta[t][j]

= max(delta[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

psi[t][j] = argmax(delta[t-1][i] * A[i][j]) for i in range(N)

其中,delta[t][j]表示在时间步t到达状态j的最大概率,psi[t][j]表示在时间步t到达状态j时的最优前一

个状态,argmax表示取最大值的索引。

import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
#    HMM.backward(Q, V, A, B, O, PI)
    HMM.viterbi(Q, V, A, B, O, PI)

前向算法(Forward Algorithm):前向算法用于计算给定观测序列下每个时刻的前向概率

(alpha),表示在当前时刻观测到特定状态的概率。通过递推计算,利用前一时刻的前向概率和

状态转移概率、发射概率来计算当前时刻的前向概率。数学公式:alpha[i][t] = PI[t][i] * B[i]

[indexOfO],其中alpha[i][t]表示在时刻t处于状态i的前向概率,PI[t][i]表示初始状态概率,B[i]

[indexOfO]表示在状态i观测到观测序列的概率。

后向算法(Backward Algorithm):后向算法用于计算给定观测序列下每个时刻的后向概率

(beta),表示从当前时刻开始,在未来时刻观测到特定状态的概率。通过递推计算,利用后一时

刻的后向概率和状态转移概率、发射概率来计算当前时刻的后向概率。数学公式:beta[i][t] = Σ(A[i]

[j] * B[j][indexOfO] * beta[j][t+1]),其中beta[i][t]表示在时刻t处于状态i的后向概率,A[i][j]表示状态i

转移到状态j的概率,B[j][indexOfO]表示在状态j观测到观测序列的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到给定观测序列下最可能的隐藏状态序列,

即根据观测序列推断出最可能的隐藏状态路径。通过动态规划的方式,利用状态转移概率、发射概

率和初始状态概率,计算每个时刻每个状态的最大概率值和对应的前一个状态。数学公式:delta[i]

[t] = max(delta[t-1][j] * A[j][i]) * B[i][indexOfO],其中delta[i][t]表示在时刻t处于状态i的最大概率值,

A[j][i]表示状态j转移到状态i的概率,B[i][indexOfO]表示在状态i观测到观测序列的概率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/388663.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智慧职教考试怎么搜题找答案? #微信#其他

下面将介绍一些大学生常用的日常学习辅助工具和资料,希望能为你的学习提供帮助和便利 1.题老大 这个是公众号 内容很丰富,范围包括公考、计算机、建筑工程、会计资格、消防、外语外贸、教师资格! 下方附上一些测试的试题及答案 1、带式输…

[OPEN SQL] 更新数据

UPDATE语句用于更新数据库表中的数据 本次操作使用的数据库表为SCUSTOM&#xff0c;其字段内容如下所示 航班用户(SCUSTOM) 需要操作更新以下数据 1.更新单条数据 语法格式 UPDATE <dbtab> FROM <wa>. UPDATE <dbtab> FROM TABLE <itab>. UPDATE &l…

【机器学习笔记】4 朴素贝叶斯

贝叶斯方法 贝叶斯分类 贝叶斯分类是一类分类算法的总称&#xff0c;这类算法均以贝叶斯定理为基础&#xff0c;故统称为贝叶斯分类。 朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。 先验概率 根据以往经验和分析得到的概率。我们用&#x1d443;(&#x1d44c;)来代…

MySQL 基础知识(六)之数据查询(二)

目录 6 数值型函数 7 字符串函数 8 流程控制函数 9 聚合函数 10 分组查询 (group by) 11 分组过滤 (having) 12 限定查询 (limit) 13 多表查询 13.1 连接条件关键词 (on、using) 13.2 连接算法 13.3 交叉连接 (cross join) 13.4 内连接 (inner join) 13.5 外连接 …

Redis.conf 配置文件解读

1、单位 容量单位不区分大小写&#xff0c;G和GB没有区别 配置文件 unit单位 对大小写不敏感 2、组合配置 可以使用 include 组合多个配置问题 3、网络配置 bind 127.0.0.1 # 绑定的ip protected-mode yes # 保护模式 port 6379 # 端口设置4、通用 GENERAL daemoniz…

第13讲我创建的投票列表实现

新建我创建的投票页面 {"path": "pages/createVoteList/createVoteList","style": {"navigationBarTitleText": "我创建的投票"}}个人中心页面&#xff0c;加下 点击 “我创建的投票”跳转列表页面 goVoteList:function(){u…

linux 09 软件安装,YUM

下载软件时候&#xff0c;windows会从网上下载exe文件。 windows中的exe文件linux中的rpm文件 简介部分&#xff1a; 其中的认识RPM包&#xff1a; YUM&#xff08;软件包管理工具&#xff09; 01.YUM工具简介 02.使用YUM 第一 安装YUM 全新安装&#xff1a; 01.先pin…

统计图饼图绘制方法(C语言)

统计图饼图绘制方法&#xff08;C语言&#xff09; 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图绘制较难。今值此介绍饼图的绘制方法。 本方法采用C语言的最基本功能&#xff1a; &#xff08; 1.&#xff09…

嵌入式STM32 单片机 GPIO 的工作原理详解

STM32的 GPIO 介绍 GPIO 是通用输入/输出端口的简称&#xff0c;是 STM32 可控制的引脚。GPIO 的引脚与外部硬件设备连接&#xff0c;可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。 以 STM32F103ZET6 芯片为例子&#xff0c;该芯片共有 144 脚芯片&#xff0c…

(15)Hive调优——数据倾斜的解决指南

目录 前言 一、什么是数据倾斜 二、发生数据倾斜的表现 2.1 MapReduce任务 2.2 Spark任务 三、如何定位发生数据倾斜的代码 四、发生数据倾斜的原因 3.1 key分布不均匀 3.1.1 某些key存在大量相同值 3.1.2 存在大量异常值或空值 3.2 业务数据本身的特性 3.3 SQL语句…

关于npmlink的问题

深入浅出关于Npm linl的问题 关键词&#xff1a; vue3报错 Uncaught TypeError: Cannot read properties of null (reading ‘isCE‘) at renderSlot npm link 无法实现热更新 我的开发环境是 “vue”: “^3.2.13” 今天在使用 rollup搭建组件库的时候我发现我的组件库不能…

C语言:指针的基础详解

目录 1. 内存 2. 取地址& 3. 指针变量 4. 解引用 4.1 *解引用 4.2 []解引用 4.3 ->解引用 5. 指针变量的大小 5.1 结论 6. 指针运算 7. void* 指针 8. const修饰指针 8.1 const修饰变量 8.2 const修饰指针变量 8.3 结论 9. 野指针 9.1 为什么会出现野指…

计网体系结构

计算机网络的概述 概念 网络&#xff1a;网状类的东西或系统。 计算机网络&#xff1a;是一个将分散的、具有独立性功能的计算机系统&#xff0c;通过通信设备与线路连接起来&#xff0c;由功能完善的软件实现资源共享和信息传递的系统。即计算机网络是互连(通过通信链路互连…

Go语言的100个错误使用场景(40-47)|字符串函数方法

前言 大家好&#xff0c;这里是白泽。 《Go语言的100个错误以及如何避免》 是最近朋友推荐我阅读的书籍&#xff0c;我初步浏览之后&#xff0c;大为惊喜。就像这书中第一章的标题说到的&#xff1a;“Go: Simple to learn but hard to master”&#xff0c;整本书通过分析100…

ClickHouse--03--数据类型

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 数据类型1. Int2.FloattoFloat32(...) 用来将字符串转换成 Float32 类型的函数toFloat64(...) 用来将字符串转换成 Float64 类型的函数 3.DecimaltoDecimal32(value…

微服务中台架构的设计与实现

本文将探讨微服务中台架构的设计与实现&#xff0c;介绍如何通过微服务的方式进行系统拆分和组合&#xff0c;构建灵活、可扩展且易于维护的中台架构&#xff0c;以加速企业的数字化转型和提升竞争力。 ## 1. 引言 随着企业规模的不断扩大和业务的日益复杂化&#xff0c;传统…

RabbitMQ配置消息转换器

1. 默认转换器 Test public void testSendMap() throws InterruptedException {// 准备消息Map<String, Object> msg new HashMap<>();msg.put("name", "harry");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend(&q…

问题:规范化过程主要为克服数据库逻辑结构中的插入异常、删除异常以及(??)的缺陷. #职场发展#职场发展#知识分享

问题&#xff1a;规范化过程主要为克服数据库逻辑结构中的插入异常、删除异常以及(??)的缺陷. 参考答案如图所示

JVM内存模型深度剖析与优化

JDK体系结构 Java语言的跨平台特性 JVM整体结构及内存模型 补充一个问题&#xff1a; 在minor gc过程中对象挪动后&#xff0c;引用如何修改&#xff1f; 对象在堆内部挪动的过程其实是复制&#xff0c;原有区域对象还在&#xff0c;一般不直接清理&#xff0c;JVM内部清理过程…

中国电子学会2023年12月份青少年软件编程Scratch图形化等级考试试卷四级真题(含答案)

2023-12 Scratch四级真题 分数&#xff1a;100 题数&#xff1a;24 分数&#xff1a;60min 一、单选题(共10题&#xff0c;共30分) 1.运行下列程序&#xff0c;输入“abcdef”&#xff0c;程序结束后&#xff0c;变量“字符串”是&#xff1f;&#xff08;B&#xff09;(3…
最新文章