【机器学习】基于卷积神经网络 CNN 的猫狗分类问题


文章目录

  • 一、卷积神经网络的介绍
    • 1.1 什么是卷积神经网络
    • 1.2 重要层的说明
    • 1.3 应用领域
    • 二、 软件、环境配置
    • 2.1 安装Anaconda
    • 2.2 环境准备
  • 三、猫狗分类示例
    • 3.1 图像数据预处理
    • 3.2 基准模型
    • 3.3 数据增强
    • 3.4 dropout层
    • 四、总结


一、卷积神经网络的介绍

1.1 什么是卷积神经网络

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。

卷积神经网络CNN的结构图
在这里插入图片描述

1.2 重要层的说明

请添加图片描述
上面图中是33的卷积核(卷积核一般采用33和2*2 )与上一层的结果(输入层)进行卷积的过程
②池化层
请添加图片描述
最大池化,它只是输出在区域中观察到的最大输入值
均值池化,它只是输出在区域中观察到的平均输入值
两者最大区别在于卷积核的不同(池化是一种特殊的卷积过程)
③全连接层
请添加图片描述
全连接过程,跟神经网络一样,就是每个神经元与上一层的所有神经元相连
输出层:

卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。
对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签。
在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类。
在图像语义分割中,输出层直接输出每个像素的分类结果。

1.3 应用领域

  • 计算机视觉
    图像识别
    物体识别
    行为认知
    姿态估计
    神经风格迁移
  • 自然语言处理
  • 其它
    物理学
    遥感科学
    大气科学
    卷积神经网络在计算机视觉识别上的全过程,如下图所示:
    在这里插入图片描述

二、 软件、环境配置

2.1 安装Anaconda

参考:https://blog.csdn.net/ssj925319/article/details/114947425

2.2 环境准备

  • 打开 cmd 命令终端,创建虚拟环境。
conda create -n tf1 python=3.6

在这里插入图片描述

  • 激活环境:
activate
conda activate tf1
  • 安装 tensorflow、keras 库。
  • 在新建的虚拟环境 tf1 内,使用以下命令安装两个库:
pip install tensorflow==1.14.0 -i “https://pypi.doubanio.com/simple/”
pip install keras==2.2.5 -i “https://pypi.doubanio.com/simple/”

  • 安装 nb_conda_kernels 包。
conda install nb_conda_kernels

在这里插入图片描述

  • 重新打开 Jupyter Notebook(tf1)环境下的。

在这里插入图片描述

  • 点击【New】→【Python[tf1环境下的]】创建 python 文件。

在这里插入图片描述

三、猫狗分类示例

3.1 图像数据预处理

对猫狗图像进行分类,代码如下:

import os, shutil 
# 原始目录所在的路径
original_dataset_dir = 'E:\\Cat_And_Dog\\train\\'

# 数据集分类后的目录
base_dir = 'E:\\Cat_And_Dog\\train1'
os.mkdir(base_dir)

# # 训练、验证、测试数据集的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# 猫测试数据集所在目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# 狗测试数据集所在目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# 将前1000张猫图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# 将下500张猫图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张猫图像复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将前1000张狗图像复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

分类后如下图所示:
在这里插入图片描述
在这里插入图片描述

查看分类后,对应目录下的图片数量:

#输出数据集对应目录下图片数量
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

在这里插入图片描述
猫狗训练图片各 1000 张,验证图片各 500 张,测试图片各 500 张。

3.2 基准模型

第①步:构建网络模型:

#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))

查看模型各层的参数状况:

#输出模型各层的参数状况
model.summary()

结果如下:
在这里插入图片描述
第②步:配置优化器:
loss:计算损失,这里用的是交叉熵损失
metrics:列表,包含评估模型在训练和测试时的性能的指标

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

第③步:图片格式转化
所有图片(2000张)重设尺寸大小为 150x150 大小,并使用 ImageDataGenerator 工具将本地图片 .jpg 格式转化成 RGB 像素网格,再转化成浮点张量上传到网络上。

from keras.preprocessing.image import ImageDataGenerator

# 所有图像将按1/255重新缩放
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # 这是目标目录
        train_dir,
        # 所有图像将调整为150x150
        target_size=(150, 150),
        batch_size=20,
        # 因为我们使用二元交叉熵损失,我们需要二元标签
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

输出结果:
在这里插入图片描述
查看上述图像预处理过程中生成器的输出,

#查看上面对于图片预处理的处理结果
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

如果出现错误:ImportError: Could not import PIL.Image. The use of load_img requires PIL,是因为没有安装 pillow 库导致的,使用如下命令在 tf1 虚拟环境中安装:

pip install pillow -i “https://pypi.doubanio.com/simple/”

安装完毕后,关闭 Jupyter Notebook 重新打开,重新运行一遍程序即可。
输出结果如下:

请添加图片描述
第④步:开始训练模型。

#模型训练过程
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

电脑性能越好,它训练得越快。

请添加图片描述
第⑤步:保存模型。

#保存训练得到的的模型
model.save('G:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_1.h5')

第⑥步:结果可视化(需要在 tf1 虚拟环境中安装 matplotlib 库,命令:pip install matplotlib -i “https://pypi.doubanio.com/simple/”)。

#对于模型进行评估,查看预测的准确性
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

请添加图片描述
训练结果如上图所示,很明显模型上来就过拟合了,主要原因是数据不够,或者说相对于数据量,模型过复杂(训练损失在第30个epoch就降为0了),训练精度随着时间线性增长,直到接近100%,而我们的验证精度停留在70-72%。我们的验证损失在5个epoch后达到最小,然后停止,而训练损失继续线性下降,直到接近0。
这里先解释下什么是过拟合?
过拟合的定义: 给定一个假设空间 H HH,一个假设 h hh 属于 H HH,如果存在其他的假设 h ’ h’h’ 属于 H HH,使得在训练样例上 h hh 的错误率比 h ’ h’h’ 小,但在整个实例分布上 h ’ h’h’ 比 h hh 的错误率小,那么就说假设 h hh 过度拟合训练数据。
举个简单的例子,( a )( b )过拟合,( c )( d )不过拟合,如下图所示:
请添加图片描述

过拟合常见解决方法:
(1)在神经网络模型中,可使用权值衰减的方法,即每次迭代过程中以某个小因子降低每个权值。
(2)选取合适的停止训练标准,使对机器的训练在合适的程度;
(3)保留验证数据集,对训练成果进行验证;
(4)获取额外数据进行交叉验证;
(5)正则化,即在进行目标函数或代价函数优化时,在目标函数或代价函数后面加上一个正则项,一般有L1正则与L2正则等。
不过接下来将使用一种新的方法,专门针对计算机视觉,在深度学习模型处理图像时几乎普遍使用——数据增强。

3.3 数据增强

数据集增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。

重新构建模型:

上面建完的模型就保留着,我们重新建一个 .ipynb 文件,重新开始建模。
首先猫狗图像预处理,只不过这里将分类好的数据集放在 train2 文件夹中,其它的都一样。

在这里插入图片描述

然后配置网络模型、构建优化器,然后进行数据增强,代码如下:
图像数据生成器增强数据:

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

查看数据增强后的效果:

import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
# We pick one image to "augment"
img_path = fnames[3]
# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))
# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)
# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)
# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

结果如下(共4张,这里只截取了三张):

请添加图片描述
图片格式转化。

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

开始训练并保存结果。

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
model.save('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_2.h5')

训练结果如下:

请添加图片描述
结果可视化:

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

如下图所示:

请添加图片描述
由于数据量的增加,对比基准模型,可以很明显的观察到曲线没有过度拟合了,训练曲线紧密地跟踪验证曲线,这也就是数据增强带来的影响,但是可以发现它的波动幅度还是比较大的。
下面在此数据增强的基础上,再增加一层 dropout 层,再来训练看看。

3.4 dropout层

什么是dropout层?

Dropout层在神经网络层当中是用来干嘛的呢?它是一种可以用于减少神经网络过拟合的结构,那么它具体是怎么实现的呢?
假设下图是我们用来训练的原始神经网络:

请添加图片描述
一共有四个输入 x i x_ix
i

,一个输出 y yy。Dropout 则是在每一个 batch 的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层 dropout(将神经元去除的的多少)的概率,在设定之后,就可以得到第一个 batch 进行训练的结果:
请添加图片描述
从上图我们可以看到一些神经元之间断开了连接,因此它们被 dropout 了!dropout顾名思义就是被拿掉的意思,正因为我们在神经网络当中拿掉了一些神经元,所以才叫做 dropout 层。

具体实现:

在数据增强的基础上,再添加一个 dropout 层。

#退出层
model.add(layers.Dropout(0.5))

如下图所示,仅在构建网络模型时添加一层即可,其余部分不变:

请添加图片描述
再次训练模型,查看训练结果如下:请添加图片描述
相比于只使用数据增强的效果来看,额外添加一层 dropout 层,仔细对比,可以发现训练曲线更加紧密地跟踪验证曲线,波动的幅度也降低了些,训练效果更棒了。

四、总结

使用卷积神经网络(CNN)实现猫狗分类是一种有效的方法,它能够自动从图像中学习特征并进行分类,提高准确性。

参考链接:
https://blog.csdn.net/qq_43279579/article/details/117298169
https://blog.csdn.net/ssj925319/article/details/117787737
https://www.cnblogs.com/geeksongs/p/13446980.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/38905.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

师承AI世界新星|7天获新加坡南洋理工大学访学邀请函

能够拜师在“人工智能10大新星”名下,必定可以学习到前沿技术,受益良多,本案例中的C老师无疑就是这个幸运儿。我们只用了7天时间就取得了这位AI新星导师的邀请函,最终C老师顺利获批CSC,如愿出国。 C老师背景&#xff1…

基于单片机的盲人导航智能拐杖老人防丢防摔倒发短息定位

功能介绍 以STM32单片机作为主控系统; OLED液晶当前实时距离,安全距离,当前经纬度信息;超声波检测小于设置的安全距离,蜂鸣器报警提示:低于安全距离!超声波检测当前障碍物距离,GPS进…

【分布式系统案例课】查询服务设计、计数栈选型、总结

查询服务设计 数据获取路径 两个问题考虑: 1、老数据归档的问题。 如果所有分钟小时级的数据一直存在这个DB当中,那么DB的存储空间会被不断的消耗,性能也会不断的下降。所以一旦小时天月的数据聚合完成,我们就可以将一些老的原始…

TCP/IP网络编程 第十二章:I/O复用

基于I/O复用的服务器端 多进程服务器端的缺点和解决方法 为了构建并发服务器,只要有客户端连接请求就会创建新进程。这的确是实际操作中采用的种方案,但并非十全十美,因为创建进程时需要付出极大代价。这需要大量的运算和内存空间&#xff…

智慧校园能源管控系统

智慧校园能源管控系统是一种搭载了物联网技术、大数据技术、大数据等技术性智能化能源管理方法系统,致力于为学校提供更高效、安全性、可信赖的能源供应管理和服务。该系统包括了校内的电力工程、水、气、暖等各类能源,根据对能源的实时检测、数据统计分…

uni-app中a标签下载文件跳转后左上角默认返回键无法继续返回

1.首先使用的是onBackPress //跟onShow同级别 onBackPress(option){ uni.switchTab({ url:/pages/....... return true }) }发现其在uni默认头部中使用是可以的 但是h5使用了"navigationStyle":"custom"后手机默认的返回并不可以, 2.经过查询…

【MySQL技术专题】「问题实战系列」深入探索和分析MySQL数据库的数据备份和恢复实战开发指南(备份+恢复篇)

深入探索和分析MySQL数据库的数据备份和恢复实战开发指南 MySQL数据库备份全量备份全量备份应用场景 增量备份binlogbinlog主要作用binlog的作用主要有两个方面 开启binlog日志功能要开启MySQL的binlog日志步骤 mysqlbinlogmysqlbinlog的使用案例 全量备份与增量备份结合按天全…

WebRTC不同方案对比

1.功能上会有一些出入,尤其是国内的metaRTC版本迭代很快, 2.后续的ffmpeg也在进行支持webrtc特性,obs新的版本好像已经支持了webrtc, 3.对于webrtc部分缺少的信令部分的标准化也有了对应的标准whip和whep协议 所以,如…

好的CRM需要有哪些特点?

CRM客户管理系统在企业中占有举足轻重的地位,既是战略工具又可以强化部门间的团队协作、优化销售流程、缩短销售周期。市面上crm做得比较好的公司有哪些? 1.上榜Gartner魔力象限 好的CRM市场的引领、产品研发的持续投入、技术创新以及不断增长的市场份…

性能测试:Jmeter-Beanshell请求加密实例

目录 1. 打包加密方法Jar包,导入Jmeter 2. 加密参数 总结: 进行性能测试时,有可能遇到一种场景:接口请求由于安全问题,需要进行加密发送。 这种场景下,使用Jmeter实现性能测试,则也需要使用…

自学网络安全究竟该从何学起?

一、为什么选择网络安全? 这几年随着我国《国家网络空间安全战略》《网络安全法》《网络安全等级保护2.0》等一系列政策/法规/标准的持续落地,网络安全行业地位、薪资随之水涨船高。 未来3-5年,是安全行业的黄金发展期,提前踏入行…

Redis基本全局命令(含key过期策略)

Redis基本全局命令 KEYEXISTSDELEXPIRETTLRedis的key过期策略TYPE KEY 返回所有满⾜样式(pattern)的key。⽀持如下统配样式。 h?llo 匹配 hello , hallo 和 hxlloh*llo 匹配 hllo 和 heeeelloh[ae]llo 匹配 hello 和 hallo 但不匹配 hilloh[^e]llo 匹配…

使用Pandas计算两个系统客户名称的相似度

引言: 在日常业务处理中,我们经常会面临将不同系统中的数据进行匹配和比对的情况。特别是在涉及到客户管理的领域,我们需要确保两个系统中的客户记录是准确、一致和无重复的。 本文将介绍如何使用Python的Pandas库来处理这个问题。我们将以…

美颜SDK与动态贴纸技术的发展趋势:向更智能、更新颖的美化

美颜SDK和动态贴纸技术在近年来迅速发展,成为移动应用、社交媒体和视频直播等领域中不可或缺的元素。本文将探讨美颜SDK和动态贴纸技术的最新发展趋势,包括智能化算法的应用、增强现实的融合以及个性化定制的兴起。我们将展望未来,展示这些技…

STM32(HAL库)通过ADC读取MQ2数据

目录 1、简介 2、CubeMX初始化配置 2.1 基础配置 2.1.1 SYS配置 2.1.2 RCC配置 2.2 ADC外设配置 2.3 串口外设配置 2.4 项目生成 3、KEIL端程序整合 3.1 串口重映射 3.2 ADC数据采集 3.3 主函数代 3.4 效果展示 1、简介 本文通过STM32F103C8T6单片机通过HAL库方式对M…

注释气泡图函数(更新)

之前我们写过一个原创可视化函数Dotplot_anno.R,nature级别图表:一个注释气泡热图函数(适用于单细胞及普通数据)。主要解决的问题是1) 单细胞基因可视化分组注释。2) Bulk RNA差异基因热图、气泡图。3) 富集分析结果气泡图展示。这…

【案例实战】高并发业务的多级缓存架构一致性解决方案

我们在高并发的项目中基本上都离不开缓存,那么既然引入缓存,那就会有一个缓存与数据库数据一致性的问题。 首先,我们先来看看高并发项目里面Redis常见的三种缓存读写模式。 Cache Aside 读写分离模式,是最常见的Redis缓存模式&a…

JVM理论(五)执行引擎--解释器/JIT编译器

概述 首先执行引擎是java虚拟机核心的组成部分之一;而JVM的主要任务是装载字节码到内存,但不能够直接运行在操作系统之上.因为字节码指令并非等价于本地机器指令,它仅仅包含能够被JVM所识别的指令、符号表、以及其他信息;而此时执行引擎就华丽登场,它的任务就是将字节码指令解…

Appium Android ——利用 TestNG 并行执行用例

目录 前言: 一、测试类 二、连接两个 Android 设备或启动两个虚拟机 三、项目路径下新建两个 testng.xml 四、开启两个 appium server 五、导出依赖 六、执行测试 七、查看报告 前言: Appium是一个流行的移动应用自动化测试工具,…

当DevOps遇到AI,黑马迎来3.0时代丨IDCF

随着GhatGPT的爆火,人工智能和研发效能,无疑成为了2023的两个最重要的关键词。大规模语言模型LLM和相关应用的快速发展正在对研发团队的工作方式产生深远影响,这几乎象征着新的生产力革命的到来。 那么,作为一名工程师&#xff0…
最新文章