书生开源大模型训练营-第3讲笔记

5.Langchain和InternLM搭建知识库

5.1环境

还是一样,开发机中创建镜像,以及所需依赖

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

5.2模型参数

# 直接拷贝,较快
mkdir -p /root/data/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b

# 下载,较慢
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/data/model', revision='v1.0.3')

同时,我们要使用开源词向量sentence transformer,从huggingface上直接下载

pip install -U huggingface_hub
import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

5.3下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

5.4项目代码

cd /root/data
git clone https://github.com/InternLM/tutorial

5.5数据库搭建

5.5.1数据准备

我们选择由上海人工智能实验室开源的一系列大模型工具开源仓库作为语料库来源,包括

  • OpenCompass:面向大模型评测的一站式平台
  • IMDeploy:涵盖了 LLM 任务的全套轻量化、部署和服务解决方案的高效推理工具箱
  • XTuner:轻量级微调大语言模型的工具库
  • InternLM-XComposer:浦语·灵笔,基于书生·浦语大语言模型研发的视觉-语言大模型
  • Lagent:一个轻量级、开源的基于大语言模型的智能体(agent)框架
  • InternLM:一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖
# 进入到数据库盘
cd /root/data
# clone 上述开源仓库
git clone https://gitee.com/open-compass/opencompass.git
git clone https://gitee.com/InternLM/lmdeploy.git
git clone https://gitee.com/InternLM/xtuner.git
git clone https://gitee.com/InternLM/InternLM-XComposer.git
git clone https://gitee.com/InternLM/lagent.git
git clone ttps://gitee.com/InternLM/InternLM.git

get_files:得到所有md和txt结尾的文本文件

import os 
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list
5.5.2加载数据

​ 得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader

def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs
5.5.3构建向量数据库

得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150(由于篇幅限制,此处没有展示切割效果,学习者可以自行尝试一下,想要深入学习 LangChain 文本分块可以参考教程《LangChain - Chat With Your Data》

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化。LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

同时,考虑到 Chroma 是目前最常用的入门数据库,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma

# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()
5.5.4整合代码
# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os

# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
tar_dir = [
    "/root/data/InternLM",
    "/root/data/InternLM-XComposer",
    "/root/data/lagent",
    "/root/data/lmdeploy",
    "/root/data/opencompass",
    "/root/data/xtuner"
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

5.6InternLM 接入 LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 InternLM,继承 LangChain 的 LLM 类自定义一个 InternLM LLM 子类,从而实现将 InternLM 接入到 LangChain 框架中。完成 LangChain 的自定义 LLM 子类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 InternLM 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

class InternLM_LLM(LLM):
    # 基于本地 InternLM 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: InternLM 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
        self.model = self.model.eval()
        print("完成本地模型的加载")

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
        - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
        - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
        """
        
        messages = [(system_prompt, '')]
        response, history = self.model.chat(self.tokenizer, prompt , history=messages)
        return response
        
    @property
    def _llm_type(self) -> str:
        return "InternLM"

5.7构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。所谓检索问答链,即通过一个对象完成检索增强问答(即RAG)的全流程,针对 RAG 的更多概念,我们会在视频内容中讲解,也欢迎读者查阅该教程来进一步了解:《LLM Universe》。我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

5.7.1加载向量数据库
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)
5.7.2实例化自定义 LLM 与 Prompt Template

我们实例化一个基于 InternLM 自定义的 LLM 对象:

from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答你不知道。
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)
5.7.3构建检索问答链

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 InternLM 的检索问答链:

from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 InternLM 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果

# 检索问答链回答效果
question = "什么是InternLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

5.8部署web demo

在完成上述核心功能后,我们可以基于 Gradio 框架将其部署到 Web 网页,从而搭建一个小型 Demo,便于测试与使用。

我们首先将上文的代码内容封装为一个返回构建的检索问答链对象的函数,并在启动 Gradio 的第一时间调用该函数得到检索问答链对象,后续直接使用该对象进行问答对话,从而避免重复加载模型:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
import gradio as gr


def load_chain():
    # 加载问答链
    # 定义 Embeddings
    embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

    # 向量数据库持久化路径
    persist_directory = 'data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上
        embedding_function=embeddings
    )

    # 加载自定义 LLM
    llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")

    # 定义一个 Prompt Template
    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
    案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

    # 运行 chain
    qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
    
    return qa_chain

class Model_center():
    """
    存储检索问答链的对象 
    """
    def __init__(self):
        # 构造函数,加载检索问答链
        self.chain = load_chain()

    def qa_chain_self_answer(self, question: str, chat_history: list = []):
        """
        调用问答链进行回答
        """
        if question == None or len(question) < 1:
            return "", chat_history
        try:
            chat_history.append(
                (question, self.chain({"query": question})["result"]))
            # 将问答结果直接附加到问答历史中,Gradio 会将其展示出来
            return "", chat_history
        except Exception as e:
            return e, chat_history




# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:
    with gr.Row(equal_height=True):   
        with gr.Column(scale=15):
            # 展示的页面标题
            gr.Markdown("""<h1><center>InternLM</center></h1>
                <center>书生浦语</center>
                """)

    with gr.Row():
        with gr.Column(scale=4):
            # 创建一个聊天机器人对象
            chatbot = gr.Chatbot(height=450, show_copy_button=True)
            # 创建一个文本框组件,用于输入 prompt。
            msg = gr.Textbox(label="Prompt/问题")

            with gr.Row():
                # 创建提交按钮。
                db_wo_his_btn = gr.Button("Chat")
            with gr.Row():
                # 创建一个清除按钮,用于清除聊天机器人组件的内容。
                clear = gr.ClearButton(
                    components=[chatbot], value="Clear console")
                
        # 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
        db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[
                            msg, chatbot], outputs=[msg, chatbot])

    gr.Markdown("""提醒:<br>
    1. 初始化数据库时间可能较长,请耐心等待。
    2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>
    """)
gr.close_all()
# 直接启动
demo.launch()

6.大作业

​ github上找了一些前端面试题作为向量库。

创建向量数据库

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os
 
# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".pdf"):
                file_list.append(os.path.join(filepath, filename))
    return file_list
 
# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        elif file_type == 'pdf':
            loader = PyPDFLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs
 
# 目标文件夹
tar_dir = [
    "/root/homework3/data/vue"
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
 
# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 构建向量数据库
# 定义持久化路径
persist_directory = '/root/homework3/data/db/'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

然后将web_demo.py中的数据库path修改为我们新的数据库位置

image-20240213164247996

image-20240213164255688

有些敏感过头了好像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/395134.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

亿赛通-数据泄露防护(DLP)44个接口存在远程命令执行漏洞

文章目录 前言声明一、系统简介二、漏洞描述三、影响版本四、漏洞复现五、整改意见 前言 亿赛通-数据泄露防护是一款专门防止您的私人数据资产在分享、存储过程中&#xff0c;被他人非法窃取或使用的安全产品。亿赛通-数据泄露防护(DLP)44个接口存在远程命令执行漏洞。 声明 …

【类与对象 -2】学习类的6个默认成员函数中的构造函数与析构函数

目录 1.类的6个默认成员函数 2.构造函数 2.1概念 2.2特性 3.析构函数 3.1析构函数的概念 3.2特性 1.类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&#xff1f;并不是&#xff0c;任何类在什么都不写时&#xff0c;…

芯片的分类

目录 通用处理器数字信号处理器专用处理器 通用处理器 我们常听说的中央处理器CPU就是一种典型的通用处理器&#xff08;GPP&#xff09;。这种处理器多使用片上系统&#xff08;SoC&#xff09;的设计理念&#xff0c;在处理器上集成各种功能模块&#xff0c;每一种功能都是用…

Authing 身份云入选崔牛会「2024 中国企业服务云图」

近日&#xff0c;B2B 领域知名企业服务平台——崔牛会正式对外发布了「2024 中国企业服务云图」&#xff0c;Authing 身份云凭借在 IDaaS 领域的先进能力和卓越表现&#xff0c;从众多参选企业中脱颖而出&#xff0c;成功入选图谱技术支撑「 IDaaS 」板块&#xff0c;并荣登榜首…

Apache DolphinScheduler数仓任务管理规范

前言&#xff1a; 大数据领域对多种任务都有调度需求&#xff0c;以离线数仓的任务应用最多&#xff0c;许多团队在调研开源产品后&#xff0c;选择Apache DolphinScheduler&#xff08;以下简称DS&#xff09;作为调度场景的技术选型。得益于DS优秀的特性&#xff0c;在对数仓…

个人2024年工作计划与目标:用这个待办计划管理工具

春节的喜庆气氛逐渐散去&#xff0c;取而代之的是新的一年奋斗的号角。开工之际&#xff0c;我深知为自己制定一份2024年的工作计划与目标至关重要。这不仅仅是对未来一年的规划&#xff0c;更是对自己的一份承诺和责任。 坐在电脑前&#xff0c;我开始思考如何着手这份计划。…

1.3_2 中断和异常

文章目录 1.3_2 中断和异常&#xff08;一&#xff09;中断的作用&#xff08;二&#xff09;中断的类型1、内中断2、外中断3、中断分类总结 &#xff08;三&#xff09;中断机制的基本原理 总结 1.3_2 中断和异常 &#xff08;一&#xff09;中断的作用 CPU上会运行两种程序&…

阿里云香港轻量应用服务器网络线路cn2?

阿里云香港轻量应用服务器是什么线路&#xff1f;不是cn2。 阿里云香港轻量服务器是cn2吗&#xff1f;香港轻量服务器不是cn2。阿腾云atengyun.com正好有一台阿里云轻量应用服务器&#xff0c;通过mtr traceroute测试了一下&#xff0c;最后一跳是202.97开头的ip&#xff0c;1…

ssh连接服务器需要子网掩码吗?

IP寻址需要同时知道IP地址和子网掩码&#xff0c;但是在通过ssh连接服务器时&#xff0c;只需要知道IP地址和端口号就可以了&#xff0c;ssh通讯为什么不需要子网掩码呢。在不知道子网掩码的前提下&#xff0c;可以正确找到IP对应的主机吗&#xff1f; 不需要&#xff0c;SSH&a…

【C++】中类的6个默认成员函数 取地址及const成员函数 学习运算符重载 【实现一个日期类】

文章目录 一、【C】赋值运算符重载1.1 运算符重载【引入】1.2 运算符重载1.3 赋值运算符重载1.4 赋值 二、日期类的实现2.1 判断小于2.2 判断等于2.3 判断小于等于2.4 判断大于2.5 判断大于等于2.6 判断不等于2.7 日期加等天数2.8 获取月份天数2.9 日期加天数2.9.1 日期减等天数…

LeetCode 0590. N 叉树的后序遍历:深度优先搜索(DFS)

【LetMeFly】590.N 叉树的后序遍历&#xff1a;深度优先搜索(DFS) 力扣题目链接&#xff1a;https://leetcode.cn/problems/n-ary-tree-postorder-traversal/ 给定一个 n 叉树的根节点 root &#xff0c;返回 其节点值的 后序遍历 。 n 叉树 在输入中按层序遍历进行序列化表…

C语言字符串函数strtok

注意&#xff1a; 该函数会将改变原始字符串 str&#xff0c;使其所包含的所有分隔符变成结束标记 ‘\0’ 。由于该函数需要更改字符串 str&#xff0c;因此 str 指向的内存必须是可写的。首次调用时 str 指向原始字符串&#xff0c;此后每次调用 str 用 NULL 代替。示例&#…

Ubuntu本地安装code-server结合内网穿透实现安卓平板远程写代码

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以&#xff0c;这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…

Leetcode 283.移动零

给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0]示例 2: 输入: nums [0] 输出: […

来了解AI自动直播带货新玩法!普通人也能轻松上手!

抖捧AI实景自动直播系统&#xff0c;以低成本常态化高效率的直播方式&#xff0c;为进入直播间的用户打造了更真实的体验&#xff0c;更帮助了大量的实体商家降低自播的成本&#xff0c;实现降本增效&#xff0c;接下来看看抖捧最新的餐饮休娱案例及玩法&#xff0c;每天直播八…

实用工具推荐

可以提高你工作效率的工具 SnipasteSnipaste Snipaste Snipaste

数字化商品管理:革新鞋服零售模式,引领智能商业新时代

随着科技的快速发展&#xff0c;数字化浪潮席卷各行各业&#xff0c;鞋服零售企业亦不例外。在这个新时代&#xff0c;数字化商品管理不仅成为鞋服零售企业革新的关键&#xff0c;更是其引领智能商业浪潮的重要引擎。本文将围绕数字化商品管理如何深刻影响鞋服零售模式&#xf…

HashCat报错

HashCat执行命令 hashcat -a 3 -m 17225 -2 ?l?u $pkzip2$3*1*1*0*0*24*143c*4917*4bfe891c40b54ed8a613dc05c1a5a5c6df68da07f2a00e55d705a5bc04f3c149a53ab891*1*0*8*24*2e57*490e*028de43f9edfed13437c0964625b78391e2876248d3362b240c2bbfd7dbc3ff022ef2e07*2*0*67*5b*d6…

建立流行病预警指数体系并优化传染病模型:对公共卫生突发事件监测数据的分析

应对紧急情况造成的损害的能力是紧急能力现代化的重要象征。 在应对紧急情况时&#xff0c;政府机构和决策者需要更多信息来源&#xff0c;以更有效地估计灾难可能的演变。 这篇论文提出了一个预测COVID-19动态演变的优化模型&#xff0c;该模型将系统动力学的传播算法与预警指…

css pointer-events 多层鼠标点击事件

threejs 无法滑动视角&#xff0c;菜单界面覆盖threejs操作事件。 pointer-events /* Keyword values */ pointer-events: auto; pointer-events: none; pointer-events: visiblePainted; /* SVG only */ pointer-events: visibleFill; /* SVG only */ pointer-events: visib…