【RT-DETR有效改进】Best Paper | DAttention (DAT)可变形注意力机制和动态采样点

一、本文介绍

本文给大家带来的是RT-DETR改进DAT(Vision Transformer with Deformable Attention)的教程,其发布于2022年CVPR2022上同时被评选为Best Paper由此可以证明其是一种十分有效的改进机制,其主要的核心思想是引入可变形注意力机制和动态采样点(听着是不是和可变形动态卷积DCN挺相似)。本文的讲解主要包含三方面:DAT的网络结构思想、DAttention的代码复现,如何添加DAttention到你的结构中实现涨点,本文改进是基于ResNet18、ResNet34、ResNet50、ResNet101,文章中均以提供,本专栏的改进内容全网独一份深度改进RT-DETR非那种无效Neck部分改进,同时本文的改进也支持主干上的即插即用,本文内容也支持PP-HGNetV2版本的修改。

专栏目录: RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR      

二、DAT的网络结构思想

论文地址: DAT论文地址

官方地址:官方代码的地址


2.1 DAT的主要思想和改进

DAT(Vision Transformer with Deformable Attention)是一种引入了可变形注意力机制的视觉Transformer,DAT的核心思想主要包括以下几个方面:

  1. 可变形注意力(Deformable Attention):传统的Transformer使用标准的自注意力机制,这种机制会处理图像中的所有像素,导致计算量很大。而DAT引入了可变形注意力机制,它只关注图像中的一小部分关键区域。这种方法可以显著减少计算量,同时保持良好的性能。

  2. 动态采样点:在可变形注意力机制中,DAT动态地选择采样点,而不是固定地处理整个图像。这种动态选择机制使得模型可以更加集中地关注于那些对当前任务最重要的区域。

  3. 即插即用:DAT的设计允许它适应不同的图像大小和内容,使其在多种视觉任务中都能有效工作,如图像分类、对象检测等。

总结:DAT通过引入可变形注意力机制,改进了视觉Transformer的效率和性能,使其在处理复杂的视觉任务时更加高效和准确。


2.2 DAT的网络结构图 

(a) 展示了可变形注意力的信息流。左侧部分,一组参考点均匀地放置在特征图上,这些点的偏移量是由查询通过偏移网络学习得到的。然后,如右侧所示,根据变形点从采样特征中投影出变形的键和值。相对位置偏差也通过变形点计算,增强了输出转换特征的多头注意力。为了清晰展示,图中仅显示了4个参考点,但在实际实现中实际上有更多的点。

(b) 展示了偏移生成网络的详细结构,每层输入和输出特征图的大小都有标注(这个Offset network在网络的代码中需要控制可添加可不添加)。

通过上面的方式产生多种参考点分布在图像上,从而提高检测的效率,最终的效果图如下->


2.3 DAT和其他机制的对比

DAT与其他视觉Transformer模型和CNN模型中的DCN(可变形卷积网络)的对比图如下,突出了它们处理查询的不同方法(图片展示的很直观,不给大家描述过程了)


三、DAT即插即用的代码块

下面的代码是DAT的网络结构代码,官方的代码中存在许多bug而且参数都未定义,这里我替大家都行了修改而且在使用时无需手动添加任何参数(但是本文的方法需要按照有参的注意力机制添加但是只是不需要进行传入参数在yaml文件中,ya'm),我都设置了通过模型进行了自动计算,使用方法看章节四。

import numpy as np
import torch
import torch.nn as nn
import einops
from timm.models.layers import trunc_normal_

__all__ = ['DAttentionBaseline', 'BasicBlock_DAT', 'BottleNeck_DAT']


class LayerNormProxy(nn.Module):

    def __init__(self, dim):
        super().__init__()
        self.norm = nn.LayerNorm(dim)

    def forward(self, x):
        x = einops.rearrange(x, 'b c h w -> b h w c')
        x = self.norm(x)
        return einops.rearrange(x, 'b h w c -> b c h w')


class DAttentionBaseline(nn.Module):

    def __init__(
            self, q_size=(224, 224), kv_size=(224, 224), n_heads=8, n_head_channels=32, n_groups=1,
            attn_drop=0.0, proj_drop=0.0, stride=1,
            offset_range_factor=-1, use_pe=True, dwc_pe=True,
            no_off=False, fixed_pe=False, ksize=9, log_cpb=False
    ):

        super().__init__()
        n_head_channels = int(q_size / 8)
        q_size = (q_size, q_size)

        self.dwc_pe = dwc_pe
        self.n_head_channels = n_head_channels
        self.scale = self.n_head_channels ** -0.5
        self.n_heads = n_heads
        self.q_h, self.q_w = q_size
        # self.kv_h, self.kv_w = kv_size
        self.kv_h, self.kv_w = self.q_h // stride, self.q_w // stride
        self.nc = n_head_channels * n_heads
        self.n_groups = n_groups
        self.n_group_channels = self.nc // self.n_groups
        self.n_group_heads = self.n_heads // self.n_groups
        self.use_pe = use_pe
        self.fixed_pe = fixed_pe
        self.no_off = no_off
        self.offset_range_factor = offset_range_factor
        self.ksize = ksize
        self.log_cpb = log_cpb
        self.stride = stride
        kk = self.ksize
        pad_size = kk // 2 if kk != stride else 0

        self.conv_offset = nn.Sequential(
            nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),
            LayerNormProxy(self.n_group_channels),
            nn.GELU(),
            nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False)
        )

        if self.no_off:
            for m in self.conv_offset.parameters():
                m.requires_grad_(False)

        self.proj_q = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_k = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0)

        self.proj_v = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )
        self.proj_out = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_drop = nn.Dropout(proj_drop, inplace=True)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)

        if self.use_pe and not self.no_off:
            if self.dwc_pe:
                self.rpe_table = nn.Conv2d(
                    self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)
            elif self.fixed_pe:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w)
                )
                trunc_normal_(self.rpe_table, std=0.01)
            elif self.log_cpb:
                # Borrowed from Swin-V2
                self.rpe_table = nn.Sequential(
                    nn.Linear(2, 32, bias=True),
                    nn.ReLU(inplace=True),
                    nn.Linear(32, self.n_group_heads, bias=False)
                )
            else:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1)
                )
                trunc_normal_(self.rpe_table, std=0.01)
        else:
            self.rpe_table = None

    @torch.no_grad()
    def _get_ref_points(self, H_key, W_key, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),
            torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2

        return ref

    @torch.no_grad()
    def _get_q_grid(self, H, W, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.arange(0, H, dtype=dtype, device=device),
            torch.arange(0, W, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2

        return ref

    def forward(self, x):
        x = x
        B, C, H, W = x.size()
        dtype, device = x.dtype, x.device

        q = self.proj_q(x)
        q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)
        offset = self.conv_offset(q_off).contiguous()  # B * g 2 Hg Wg
        Hk, Wk = offset.size(2), offset.size(3)
        n_sample = Hk * Wk

        if self.offset_range_factor >= 0 and not self.no_off:
            offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)
            offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)

        offset = einops.rearrange(offset, 'b p h w -> b h w p')
        reference = self._get_ref_points(Hk, Wk, B, dtype, device)

        if self.no_off:
            offset = offset.fill_(0.0)

        if self.offset_range_factor >= 0:
            pos = offset + reference
        else:
            pos = (offset + reference).clamp(-1., +1.)

        if self.no_off:
            x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)
            assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"
        else:
            x_sampled = F.grid_sample(
                input=x.reshape(B * self.n_groups, self.n_group_channels, H, W),
                grid=pos[..., (1, 0)],  # y, x -> x, y
                mode='bilinear', align_corners=True)  # B * g, Cg, Hg, Wg

        x_sampled = x_sampled.reshape(B, C, 1, n_sample)
        # self.proj_k.weight = torch.nn.Parameter(self.proj_k.weight.float())
        # self.proj_k.bias = torch.nn.Parameter(self.proj_k.bias.float())
        # self.proj_v.weight = torch.nn.Parameter(self.proj_v.weight.float())
        # self.proj_v.bias = torch.nn.Parameter(self.proj_v.bias.float())
        # 检查权重的数据类型
        q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)

        k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
        v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)

        attn = torch.einsum('b c m, b c n -> b m n', q, k)  # B * h, HW, Ns
        attn = attn.mul(self.scale)

        if self.use_pe and (not self.no_off):

            if self.dwc_pe:
                residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels,
                                                                              H * W)
            elif self.fixed_pe:
                rpe_table = self.rpe_table
                attn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)
            elif self.log_cpb:
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (
                        q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,
                                                                                               n_sample,
                                                                                               2).unsqueeze(1)).mul(
                    4.0)  # d_y, d_x [-8, +8]
                displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)
                attn_bias = self.rpe_table(displacement)  # B * g, H * W, n_sample, h_g
                attn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)
            else:
                rpe_table = self.rpe_table
                rpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (
                        q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,
                                                                                               n_sample,
                                                                                               2).unsqueeze(1)).mul(
                    0.5)
                attn_bias = F.grid_sample(
                    input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads,
                                           g=self.n_groups),
                    grid=displacement[..., (1, 0)],
                    mode='bilinear', align_corners=True)  # B * g, h_g, HW, Ns

                attn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)
                attn = attn + attn_bias

        attn = F.softmax(attn, dim=2)
        attn = self.attn_drop(attn)

        out = torch.einsum('b m n, b c n -> b c m', attn, v)

        if self.use_pe and self.dwc_pe:
            out = out + residual_lepe
        out = out.reshape(B, C, H, W)

        y = self.proj_drop(self.proj_out(out))
        h, w = pos.reshape(B, self.n_groups, Hk, Wk, 2), reference.reshape(B, self.n_groups, Hk, Wk, 2)

        return y


from collections import OrderedDict
import torch.nn.functional as F


class ConvNormLayer(nn.Module):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 groups=1,
                 act=None):
        super(ConvNormLayer, self).__init__()
        self.act = act
        self.conv = nn.Conv2d(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups)

        self.norm = nn.BatchNorm2d(ch_out)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        if self.act:
            out = getattr(F, self.act)(out)
        return out



class BasicBlock_DAT(nn.Module):
    expansion = 1

    def __init__(self,
                 ch_in,
                 ch_out,
                 stride,
                 shortcut,
                 act='relu',
                 variant='b',
                 att=False):
        super(BasicBlock_DAT, self).__init__()
        self.shortcut = shortcut
        if not shortcut:
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential()
                self.short.add_sublayer(
                    'pool',
                    nn.AvgPool2d(
                        kernel_size=2, stride=2, padding=0, ceil_mode=True))
                self.short.add_sublayer(
                    'conv',
                    ConvNormLayer(
                        ch_in=ch_in,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1))
            else:
                self.short = ConvNormLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=1,
                    stride=stride)

        self.branch2a = ConvNormLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=3,
            stride=stride,
            act='relu')

        self.branch2b = ConvNormLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=3,
            stride=1,
            act=None)

        self.att = att
        if self.att:
            self.se = DAttentionBaseline(ch_out)

    def forward(self, inputs):
        out = self.branch2a(inputs)
        out = self.branch2b(out)

        if self.att:
            out = self.se(out)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        out = out + short
        out = F.relu(out)

        return out


class BottleNeck_DAT(nn.Module):
    expansion = 4

    def __init__(self, ch_in, ch_out, stride, shortcut, act='relu', variant='d', att=False):
        super().__init__()

        if variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        width = ch_out

        self.branch2a = ConvNormLayer(ch_in, width, 1, stride1, act=act)
        self.branch2b = ConvNormLayer(width, width, 3, stride2, act=act)
        self.branch2c = ConvNormLayer(width, ch_out * self.expansion, 1, 1)

        self.shortcut = shortcut
        if not shortcut:
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential(OrderedDict([
                    ('pool', nn.AvgPool2d(2, 2, 0, ceil_mode=True)),
                    ('conv', ConvNormLayer(ch_in, ch_out * self.expansion, 1, 1))
                ]))
            else:
                self.short = ConvNormLayer(ch_in, ch_out * self.expansion, 1, stride)

        self.att = att
        if self.att:
            self.se = DAttentionBaseline(ch_out * 4)

    def forward(self, x):
        out = self.branch2a(x)
        out = self.branch2b(out)
        out = self.branch2c(out)

        if self.att:
            out = self.se(out)

        if self.shortcut:
            short = x
        else:
            short = self.short(x)

        out = out + short
        out = F.relu(out)

        return out


四、添加DAT到你的网络中

修改教程分两种,一种是替换修改ResNet中的Basicclock/Bottleneck模块的,一种是在主干上即插即用的修改教程,如果你只需要一种那么修改对应的就行,互相之间并不影响,需要注意的是即插即用的需要修改ResNet改进才行,链接如下:

ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)


4.1 修改Basicclock/Bottleneck的教程

4.1.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.1.2 修改二 

第二步此处需要注意,因为我这里默认大家修改了ResNet系列的模型了,同级目录下应该有一个ResNet.py的文件夹,我们这里需要找到我们'ultralytics/nn/Addmodules/ResNet.py'创建的ResNet的文件夹(默认大家已经创建了!!!)

我们只需要修改上面的两步即可,后面复制yaml文件进行运行即可了,修改方法大家只要仔细看是非常简单的。


4.2 修改主干上即插即用的教程

4.2.1 修改一(如果修改了4.1教程此步无需修改)

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.2.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.2.4 修改四 

按照我的添加在parse_model里添加即可。

        elif m in {DAttentionBaseline}:
            c2 = ch[f]
            args = [c2, *args]

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、DAT的yaml文件

5.1 替换ResNet的yaml文件1(ResNet18版本)

需要修改如下的ResNet主干才可以运行本文的改进机制 !

 ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 0-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 1
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 2
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 3-P2

  - [-1, 2, Blocks, [64,  BasicBlock_DAT, 2, True]] # 4
  - [-1, 2, Blocks, [128, BasicBlock_DAT, 3, True]] # 5-P3
  - [-1, 2, Blocks, [256, BasicBlock_DAT, 4, True]] # 6-P4
  - [-1, 2, Blocks, [512, BasicBlock_DAT, 5, True]] # 7-P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 8 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 10, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 11
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 12 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 14, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 15, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16
  - [5, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 17 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 18 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (19), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 20, downsample_convs.0
  - [[-1, 15], 1, Concat, [1]]  # 21 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (22), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 23, downsample_convs.1
  - [[-1, 10], 1, Concat, [1]]  # 24 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (25), pan_blocks.1

  - [[19, 22, 25], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 替换ResNet的yaml文件1(ResNet50版本)

需要修改如下的ResNet主干才可以运行本文的改进机制 !

 ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 0-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 1
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 2
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 3-P2


  - [-1, 3, Blocks, [64,  BottleNeck_DAT, 2, True]] # 4
  - [-1, 4, Blocks, [128, BottleNeck_DAT, 3, True]] # 5-P3
  - [-1, 6, Blocks, [256, BottleNeck_DAT, 4, True]] # 6-P4
  - [-1, 3, Blocks, [512, BottleNeck_DAT, 5, True]] # 7-P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 8 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 9
  - [-1, 1, Conv, [256, 1, 1]]  # 10, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 11
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 12 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 13
  - [-1, 3, RepC3, [256]]  # 14, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 15, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16
  - [5, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 17 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 18 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (19), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.0
  - [[-1, 15], 1, Concat, [1]]  # 21 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (22), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 23, downsample_convs.1
  - [[-1, 10], 1, Concat, [1]]  # 24 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (25), pan_blocks.1

  - [[19, 22, 25], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 6]]  # Detect(P3, P4, P5)


5.3 即插即用的yaml文件(HGNetV2版本)

此版本为HGNetV2-l的yaml文件!

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]]  # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]]  # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]]  # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]]  # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, RepC3, [256]]  # X3 (21), fpn_blocks.1
  - [-1, 1, DAttentionBaseline, []]  # 22

  - [-1, 1, Conv, [384, 3, 2]]  # 23, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]]  # cat Y4
  - [-1, 3, RepC3, [256]]  # F4 (25), pan_blocks.0
  - [-1, 1, DAttentionBaseline, []]  # 26

  - [-1, 1, Conv, [384, 3, 2]]  # 27, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]]  # cat Y5
  - [-1, 3, RepC3, [256]]  # F5 (29), pan_blocks.1
  - [-1, 1, DAttentionBaseline, []]  # 30

  - [[22, 26, 30], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

6.1 ResNet18运行成功记录截图


​6.2 ResNet50运行成功记录截图


6.3 HGNetv2运行成功记录截图


七、全文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的RT-DETR改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR  

​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/400745.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

考研高数(高阶导数的计算)

1.归纳法 常见高阶导数 2.泰勒展开式 3.莱布尼兹公式 4.用导数定义证明导函数在某一点连续的例题

亿道丨三防平板电脑厂商哪家好丨麒麟系统三防平板PAD

随着科技的飞速发展,人们对于移动设备的需求越来越高。然而,在不同的行业应用场景下,常规的智能平板往往无法满足特殊的工作要求。,亿道三防平板,将高可靠性与卓越性能高度结合,为各行各业提供卓越的移动解…

stm32——hal库学习笔记(ADC)

这里写目录标题 一、ADC简介(了解)1.1,什么是ADC?1.2,常见的ADC类型1.3,并联比较型工作示意图1.4,逐次逼近型工作示意图1.5,ADC的特性参数1.6,STM32各系列ADC的主要特性 …

华为OD机试真题-用连续自然数之和来表达整数-2023年OD统一考试(C卷)---python代码免费

题目: 代码 """ 题目分析: 一个整数 连续的自然数之和表示(非负整数)输入: 一个整数T[1,1000] 输出: 输出多个表达式,自然数个数最少优先输出 最后一行, 输出“Result : 个数…

[计网底层小探索]:实现并部署多线程并发Tcp服务器框架(基于生产者消费者模型的线程池结构)

文章目录 一.网络层与传输层协议sockaddr结构体继承体系(Linux体系)贯穿计算机系统的网络通信架构图示: 二.实现并部署多线程并发Tcp服务器框架线程池模块序列化反序列化工具模块通信信道建立模块服务器主体模块任务回调模块(根据具体应用场景可重构)Tips:DebugC代码过程中遇到…

4.Spring MVC入门

文章目录 1. HTTP协议2. Spring MVC2.1. 三层架构2.2. MVC(解决表现层的问题)2.3. 核心组件 3. Thymeleaf3.1. 模板引擎3.2. Thymeleaf3.3. 常用语法 代码 1. HTTP协议 网址:https://www.ietf.org/ (官网网址) https:…

oppo手机如何录屏?解锁录屏新功能!

“最近换了一款oppo手机,感觉它的拍照功能真的很强大。但除此之外,我发现oppo还有许多隐藏功能,比如录屏。但我尝试了很久,都没找到录屏的开关在哪里。有没有哪位oppo用户知道怎么打开这个功能呢?” 随着科技的不断发…

几个常见的C/C++语言冷知识

当涉及到C/C语言时,有一些冷知识可能并不为人所熟知,但却可以让你更深入地理解这门古老而强大的编程语言。以下是一些有趣的C/C语言冷知识。 1. 数组的下标可以是负数 在我们日常的C语言编程中,数组是一个非常常见的数据结构。我们习惯性地使…

opencv python投影变换效果

变换原理: https://www.cnblogs.com/txwtech/p/18024547 python示范代码: src2原图,4个坐标点 dst2转换后,4个坐标点 p_touyin cv2.getPerspectiveTransform(src2,dst2) #计算投影变换矩阵 #利用矩阵值进行图像投影变换 r…

TCP 三次握手和四次挥手

为了准确无误地把数据送达目标处,TCP协议采用了三次握手策略。 1 TCP 三次握手漫画图解 如下图所示,下面的两个机器人通过3次握手确定了对方能正确接收和发送消息(图片来源网络)。 简单示意图: 客户端–发送带有 SYN 标志的数据包–一次握手…

jmeter下载base64加密版pdf文件

一、何为base64加密版pdf文件 如下图所示,接口jmeter执行后,返回一串包含大小写英文字母、数字、、/、的长字符串,直接另存为pdf文件后,文件有大小,但是打不开;另存为doc文件后,打开可以看到和…

Linux多线程服务端编程:使用muduo C++网络库 学习笔记 第十二章 C++经验谈(一)

作者对C的基本态度是“练从难处练,用从易处用”,因此本章有几节“负面”的内容。作者坚信软件开发一定要时刻注意减少不必要的复杂度,一些花团锦簇的招式玩不好反倒会伤到自己。作为应用程序的开发者,对技术的运用要明智&#xff…

Pandas时间序列数据补全

一、问题 时间序列数据缺失,将其补全。 如下图所示,数据存在缺失秒级的情况 二、方法 1、需要将时间戳字段设置成 df 的索引 2、使用df.resample()方法 (1)上采样(将上一条数据作为当前缺失数据) resample()中的参数&#x…

基于深度学习的子图计数方法

背景介绍 子图计数(Subgraph Counting)是图分析中重要的研究课题。给定一个查询图 和数据图 , 子图计数需要计算 在 中子图匹配的(近似)数目 。一般我们取子图匹配为子图同构语义,即从查询图顶点集 到数据图顶点集 的…

pitch、yaw、roll

pitch、yaw、roll是描述物体在空间中旋转的术语,通常用于计算机图形学或航空航天领域中。这些术语描述了物体绕不同轴旋转的方式: Pitch(俯仰):绕横轴旋转,使物体向前或向后倾斜。俯仰角度通常用来描述物体…

基于Java+小程序点餐系统设计与实现(源码+部署文档)

博主介绍: ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ 🍅 文末获取源码联系 🍅 👇🏻 精彩专栏 推荐订阅 👇🏻 不然下次找不到 Java项目精品实…

C#上位机与三菱PLC的通信09---开发自己的通讯库(A-3E版)

1、A-3E报文回顾 具体细节请看: C#上位机与三菱PLC的通信05--MC协议之QnA-3E报文解析 C#上位机与三菱PLC的通信06--MC协议之QnA-3E报文测试 2、为何要开发自己的通讯库 前面开发了自己的A-1E协议的通讯库,实现了数据的读写,对于封装的通…

vue中切换tab时echart不显示或显示不正常

项目中在不同的tab中都使用了echart,但是在切换tab的时候发现第二个tab没有正常显示,通过排查代码和网上查阅才发现是因为element是通过display来控制tab的显示的,没有点击tab2的时候第二个echart图表的容器是 display:none,echar…

压缩感知常用的重建算法

重建算法的基本概念 在压缩感知(Compressed Sensing, CS)框架中,重建算法是指将从原始信号中以低于奈奎斯特率采集得到的压缩测量值恢复成完整信号的数学和计算过程。由于信号在采集过程中被压缩,因此重建算法的目标是找到最符合…

一文了解大数据生态

大数据一词最早指的是传统数据处理应用软件无法处理的过于庞大或过于复杂的数据集。 现在,对“大数据”一词的使用倾向于使用预测分析、用户行为分析或者其他一些从大数据中提取价值的高级数据分析方法,很少用于表示特定规模的数据集。 定义 大数据是…
最新文章