一文带你了解 OpenAI Sora

最近AI圈最火的无疑是OpenAI在2月15日发布的Sora。

Sora可以根据文本生成一分钟的高清视频,生成的视频画质、连续性、光影等都令人叹为观止,Sora无疑将视觉生成推到新的高度。

本文将重点回答三个问题:(1)Sora的原理是什么?(2)Sora到底是不是世界模型?(3)Sora会影响哪些行业?

文章目录

      • 1. 背景
      • 技术交流群
      • 2. Sora原理解读
        • 2.1 Sora要解决的任务
        • 2.2 Sora原理
        • 2.3 Sora 的重要性质
        • 2.4 重要细节推测
        • 2.5 尚未披露关键信息
        • 2.6 Sora 的应用
        • 2.7 Sora 的局限性
      • 3. Sora到底算不算世界模型?
      • 4. Sora对行业的影响
      • 5. Sora成功的关键
      • 用通俗易懂方式讲解系列

1. 背景

在国内外大多数AI厂商还在卷大语言模型之际,OpenAI悄无声息地发布了文生视频(text-to-video,简称t2v)模型Sora [1],仅仅几个视频demo,就让整个AI圈子从惊讶到恐惧,惊讶于Sora生成的视频已经到达工业应用级别,恐惧于现有的t2v模型与Sora的差距竟然如此之大。

先看个Sora官方博客展示的demo,当你向Sora输入:“A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.”,Sora则根据该文本生成了长达1分钟的高清视频。

这个demo展现了Sora至少有以下突破:(1)画质突破:视频非常高清,细节极其丰富;(2)帧率和连续性突破:视频帧率高、连续性好(无闪烁或明显的时序不一致);(3)时长突破:相比之前t2v模型仅能生成几秒的时长,Sora可以生成长达1分钟的视频,这是之前t2v模型不敢想象的;(4)物理规则理解突破:视频中物体的运动、光影等似乎都非常符合自然世界的物理规则,整个视频看上去都非常自然和逼真。

那么OpenAI到底用了什么魔法能让Sora如此惊艳?接下来我们通过OpenAI给出的Sora技术报告来解答。PS:该技术报告非常简陋,技术细节几乎没有,只给了大致的建模方法。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了SORA大模型面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

2. Sora原理解读

2.1 Sora要解决的任务

Sora要解决的任务其实非常好理解,就是给定一段文本,模型需要根据该文本生成相应的视频,简单说就是text-to-video(t2v)。t2v本身并不是一个新问题,很多厂商都在研究t2v模型,只是当前的t2v模型生成的视频普遍质量较差,很难到达工业应用级别。

在Sora出现前大家的普遍认知是:t2v是一个很难的任务,工业级别t2v模型(或者说能真正实用的t2v模型)短时间内应该很难实现。然而,OpenAI又又又一次打了所有人的脸,Sora的发布意味着,这一天已经来了。

2.2 Sora原理

如果用一句话来描述Sora训练建模过程,可以是:将原始视频通过一个视觉编码器(visual encoder)编码到隐空间(latent space)形成隐时空块(spacetime latent patches),这些隐时空块(结合text信息)通过transformer做diffusion [2, 3, 4]的训练和生成,将生成的隐时空块再通过视觉解码器(visual decoder)解码到像素空间(pixel space)。所以整个过程就是:visual encoding -> latent diffusion with diffusion transformer (DiT) [4] -> visual decoding。

(1)Visual Encoding

图片

这一步其实很好理解,就是通过一个变分自编码器(VAE)[5]的encoder将高维的原始视频映射(压缩)到较为低维的隐空间(注意:不仅仅是空间上压缩了,时间上也进行了压缩),即得到该视频的低维隐空间特征(可以看成一个大的3D tensor),为了后续transformer计算方便,将这个特征切成不重叠的3D patches,再将这些patches拉平成一个token序列,这个token序列其实就是原始视频的表征了(即visual token序列)。

(2)Latent Diffusion with DiT

在得到视觉表征(上述visual token序列)后,Sora借鉴了DiT [4],使用transformer来做diffusion model的训练,使用transformer的好处在于可以输入任意长度的token序列,这样就不再限制输入视频的尺寸和时长,并且模型很容易scale up(OpenAI表示这个我熟)。同时,因为Sora想解决t2v的问题,所以Sora会将text的表征以某种形式condition到visual tokens上(Sora技术报告中未披露,但后文我会分析最可能的实现方法)来约束生成。

在diffusion transformer的训练中,给定噪声输入(e.g., 噪声patches)并conditioned on text特征,模型被训练去预测原始视频的patches(预测过程又叫denoising过程,具体可以参考DDPM [2]中的训练算法),示意图如下:

图片

(3)Visual Decoding

第(2)步中,diffusion transformer可以生成的其实不是像素空间的视频,而是隐空间的视频表征(denoised patches),这些patches reshape成视频3D特征再经过第(1)步中的VAE的decoder,就可以映射回像素空间,得到最后生成的视频。

2.3 Sora 的重要性质

(1)Sora可以灵活地采用不同时长、分辨率和长宽比的视频

OpenAI发现之前的方法大多采用固定尺寸的视频(比如4s的256x256视频)去训练模型,和现实中任意长度、长宽比有较大gap,而采用原始尺寸的视频训练模型效果更好。得益于Sora采用的transformer结构,Sora可以输入任意多个visual patches(初始为noise patches),即可生成任意尺寸的视频。

(2)Sora有很强的语言理解能力

训练t2v模型需要大量带有文本标注的视频,OpenAI采用DALL·E 3 [6] 中的re-captioning技术来解决。首先训练一个高质量的视频标注模型(captioner model),然后它为训练集中的所有视频生成文本字幕。另外,进一步利用GPT将视频标注模型生成的简短文本扩展成更长的文本有利于还利用Sora准确遵循用户文本提示生成高质量视频。

2.4 重要细节推测

Sora的技术报告没有任何细节,仅仅告知大家大致的建模方法,但有一些细节的实现是可以推测or猜测的。

(1)visual encoder可能的结构:因为Sora在visual encoding时也压缩了时间维度,所以Sora可能采用从零开始训练的3D conv版的VAE。Sora这里没有像之前工作那样,简单地采用Stable Diffusion(SD) [3]预训练好的2D conv版的VAE。现成的SD的VAE encoder用来压缩视频最大的问题在于时间维度没有下采样,SD的VAE承担了将原本sparse的数据压缩到compact的latent domain再进行diffusion过程,从而大幅度提高training和inference的效率。然而,直接运用2D VAE缺乏了在时间维度的压缩,使得其对应的latent domain不够紧凑。实际上,这是一个历史遗留问题,大部分研究工作受算力等因素影响选择直接利用SD的预训练权重(Unet部分)、保留了2D VAE。

(2)visual encoding中视频的patches如何flatten成token序列?大概率借鉴DiT,先flatten这些patches,然后过一个linear层,将patches embed成tokens。

(3)diffusion中如何将text信息引入?大概率还是借鉴DiT和SD,在每个transformer block中,将visual tokens视为query,将text tokens作为key和value,进行cross attention,不断地conditioned on text tokens。

2.5 尚未披露关键信息

(1)模型:模型的具体结构、模型的参数量、关键参数(patch size、token数目等)如何?

(2)数据:用了哪些数据?规模如何?

(3)资源:用了多少算力?训练了多久?

(4)如何处理高帧率、时间长、高分辨率的视频?目前主流的视频生成模型都是cascade结构,也就是先生成低分辨率、低帧率的视频,再不断地在时间和空间维度上upsample。不知道Sora是否是直接一次性输出其展示的结果,如果是那样,那又会有多少token呢?
(5)如何解决motion的问题?目前的视频生成模型普遍生成的motion都不太好,最简单的例子就是“人走路”,大部分模型无法生成连贯的、长时间的、合理的人行走的过程。而Sora生成的结果在连贯性、合理性上相比之前的模型都有着断代的领先。那到底是什么促使了这样的结果呢?是模型尺寸的scale up吗?需要scale up到什么size?还是数据的收集和清洗呢?以及要做到什么程度呢?

2.6 Sora 的应用

- 视频创作:用户可以根据文本生成高质量视频;

- 扩展视频:可以在给定的视频或图片基础上,继续向前或向后延申视频;

- Video-to-video editing:例如将SDEdit [7]应用于Sora,可以很容易改变原视频的风格;

- 视频连结/过渡/转场:可以将两个视频巧妙地融合到一起,使用Sora在两个输入视频之间逐渐进行插值,从而在具有完全不同主题和场景构成的视频之间创建无缝过渡;

- 文生图:图像可以视为单帧的视频,故Sora也能实现文生图。

2.7 Sora 的局限性

原本中提到:“Sora 目前作为模拟器(simulator)表现出许多局限性。例如,它不能准确地模拟许多基本相互作用的物理过程,例如玻璃破碎。其他交互过程(例如吃食物)也不总是能正确预测。我们在登陆页面中列举了模型的其他常见故障模式,例如长时间样本中出现的不连贯性或对象的凭空出现。”

总结一下主要是:

(1)对世界的物理规则的理解还不完美;

(2)长视频生成时容易出现不连贯或者物体凭空出现的现象。

3. Sora到底算不算世界模型?

最近,围绕“Sora是不是世界模型”以及“Sora懂不懂物理世界”等相关话题引起了圈内热议。

英伟达高级研究科学家Jim Fan在X平台上称:“Sora is a learnable simulator, or “world model”.”。而图灵奖得主Yann LeCun则表示:“The generation of mostly realistic-looking videos from prompts “does not” indicate that a system understands the physical world.”。

(1)什么是世界模型(world model)[8]

“The image of the world around us, which we carry in our head, is just a model. Nobody in his head imagines all the world, government or country. He has only selected concepts, and relationships between them, and uses those to represent the real system.” --Jay Wright Forrester, the father of system dynamics

上述引自系统动力学之父Jay Wright Forrester。我的理解是人类其实无法记下整个世界的所有内容,我们的大脑仅仅是在有选择记忆一些概念和相互关系,利用这些,我们可以表征和理解这个世界。这里,我们的大脑其实在充当world model,即一个理解世界(物理)规律的模型。比如,当你看到玻璃杯从桌上掉下水泥地上,你知道接下来发生的事自然就是杯子碎了。

那么世界模型到底是啥?

我将世界模型分为广义的和狭义的进行讨论。

【广义世界模型】广义的世界模型,其实就是任何能理解世界潜在物理规律的模型,比如可以预见未来结果的模型,继续以前面那个例子为例,如果一个模型能预测玻璃杯掉下后的状态,说明该模型具备这样的能力;再比如知道世界中实体或抽象概念之间相互联系的模型,比如一个模型知道玻璃杯的硬度低于水泥地会导致玻璃破碎。这些其实在我看来都是广义上的世界模型。

【狭义世界模型】狭义的世界模型更强调理解物理世界的动力(dynamics)或者运动等物理规律的模型,了解过RL的朋友们一定特别熟悉这些。在RL中,一大分支便是model-based RL,这里的model,其实就是典型的狭义世界模型。在此模型中,给定某一时刻的状态s_t和该时刻做的动作a_t,模型可以预测出下一个时刻的状态s_t+1。所以说,狭义的世界模型其实是因果的。回到上面的例子,s_t可以是刚下落的杯子和干净的水泥地,a_t则是自由落体这个动作,s_t+1则是水泥地上碎掉的杯子这样一个状态。

(2)Sora算不算世界模型?

先给结论,我觉得Sora算广义世界模型,同时也是隐式的狭义世界模型。

Sora的diffusion过程其实是在从噪声状态在text prompts的约束下,预测可能的结果(视频)。这个过程看似跟狭义世界模型没有关系,但其实可以这么理解:

标准的狭义世界模型的状态转移过程为:s_0 -> a_0 -> s_1 -> a_1 -> s_2 -> … -> a_T-1 -> s_T。对于一个视频来说,每一帧都可以看做一个状态s,但是某一时刻动作其实很难描述,我们很难用自然语言或者其他形式来描述相邻两帧之间发生了什么。但是我们可以用自然语言描述视频在做什么,也就是s_0到s_T发生了什么,也就是将动作序列A={a_0, a_1, …, a_T-1}一起打包表示成一句话或者一段话。在Sora中,text prompts可以看做成这样的动作序列A。而Sora理解世界的过程也和一般的狭义世界模型不太一样,s_0不再是第一帧,而是“混沌”状态(噪声),于是乎diffusion的过程可以理解为:s_0(噪声) -> A -> s_1 -> … -> A -> s_T(清晰视频)。这其中,虽然Sora并没有显式建模世界的dynamics,但其实在理解自然语言和视频内容之间的关系,算是一种广义上的世界模型。

同时,回看Sora的应用可以发现,Sora其实可以拓展视频的!也就是说,换一个角度,给定一张起始图像(第一帧)和一个文本描述(描述包含生成视频内容),Sora就能生成出整个视频,那这个过程其实可以看做是在隐式的狭义世界模型建模:s_0(第一帧)-> A -> s_{1:T} (整个视频)。相当于是,给定了初始状态和接下来的所有动作A,Sora能预测出接下来的所有状态s_{1:T},所以Sora在我看来也是一个非典型的、隐式的狭义世界模型。

值得一提的是,OpenAI官方信息从未表示Sora是world model,而是强调它是world simulator,我也觉得world simulator描述比较贴切。

4. Sora对行业的影响

- 短视频内容创作可能进入新的时代:Sora可以提供丰富的视频素材;

- 视频剪辑和编辑:Sora具备相关应用能力;

- 更逼真的数字人:用户可以得到自己的“理想型”;

- 娱乐化:从图像一键生成视频;

- 游戏行业:游戏引擎受到Sora挑战;

- 图形学:未来可能不复存在。

(讨论区,欢迎大家评论添加)

5. Sora成功的关键

- 大规模训练:这点毋庸置疑。大模型、大数据量、使用大规模算力,OpenAI基本操作。

- 敢于突破常规、不屑于刷点:之前工作基本都采用SD预训练的visual encoder,也知道该encoder多少有点不合理(比如只能处理固定size的输入),但没有人真的去重新训练一个更合理的encoder(当然,更可能是算力不支持)。而OpenAI发现问题,就用算力来解决问题(大概率重新训练visual encoder)。

- 实事求是+绝对领先的sense:自回归的建模方式在LLM中大获成功,GPT系列也出自OpenAI,但这不代表“Autoregressive is everything”,Sora告诉大家,生成视频无需采用自回归,直接3D建模+transformer encoder结构就ok。

- AGI理念从上至下传播:Sam Altman绝对是一个有大格局的人物,其最终目标是实现AGI,我想整个OpenAI应该都会贯彻这样的理念,不管是ChatGPT还是Sora,都能看到AGI的影子。

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:图解 Transformer 架构
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
  • 面试了字节大模型算法岗(实习),快被问哭了。。。。

【参考文献】

[1] OpenAI. “Video generation models as world simulators.” OpenAI Blog. 2024.

[2] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models.” Advances in neural informaion processing systems 33 (2020): 6840-6851.

[3] Rombach, Robin, et al. “High-resolution image synthesis with latent diffusion models.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

[4] Peebles, William, and Saining Xie. “Scalable diffusion models with transformers.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

[5] Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).

[6] Betker, James, et al. “Improving image generation with better captions.” Computer Science. https://cdn.openai.com/papers/dall-e-3. pdf 2.3 (2023): 8.

[7] Meng, Chenlin, et al. “Sdedit: Guided image synthesis and editing with stochastic differential equations.” arXiv preprint arXiv:2108.01073 (2021).

[8] Ha, David, and Jürgen Schmidhuber. “World models.” arXiv preprint arXiv:1803.10122 (2018).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/406174.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python_Zebra斑马打印机编程学习笔记(二)】基于BarTender将btw文件转换为zpl文件

基于BarTender将btw文件转换为zpl文件 基于BarTender将btw文件转换为zpl文件前言一、BarTender1、BarTender 介绍2、BarTender 安装 二、导出 ZPL 文件1、导出 ZPL 文件步骤2、Zebra 打印机驱动安装 基于BarTender将btw文件转换为zpl文件 前言 本文介绍如何基于 BarTender 软…

完全增量式PID应用介绍(详细框图算法分析)

PID系列算法和代码可以订阅PID专栏查看更多应用介绍,常用链接如下: 1、增量式PID的抗扰 https://rxxw-control.blog.csdn.net/article/details/136253663https://rxxw-control.blog.csdn.net/article/details/1362536632、线性化功能块S_RTR https://rxxw-control.blog.cs…

多窗口编程

六、多窗口编程 QMessageBox消息对话框(掌握) QMessageBox继承自QDialog,显示一个模态对话框。用于用户前台信息通知或询问用户问题,并接收问题答案。 QDialog的Qt源码中,派生类往往都是一些在特定场合下使用的预设好的…

2024年漳州本地有正规等保测评机构吗?在哪里?

我们大家都知道,企业办理等保一定要找有资质的等保测评机构。因此不少漳州企业在问,2024年漳州本地有正规等保测评机构吗?在哪里?这里我们小编通过查找来为大家解答一下,仅供参考! 目前福建漳州本地没有正规…

jetson nano——报错(已解决):ModuleNotFoundError: No module named ‘wx‘

目录 1.问题描述:2.报错,如下图:3.**解决:得安装一些wxpython的依赖,然后自己编译**3.1 wxPython链接4.编译过程中的图片:(用时48min.....流泪)5.编译完成以后的图片6.验证结果7.这是…

NXP实战笔记(九):S32K3xx基于RTD-SDK在S32DS上配置 CRCIRQPower

目录 1、CRC概述 1.1、CRC配置 1.2、代码示例 2、INTCTRL 3、Power 1、CRC概述 硬件CRC产生16或者32bit的,S32K3提供了可编程多项式与其他参数需求。 CRC图示如下 1.1、CRC配置 暂时DMA不怎么会用,所以没有启用DMA CRC的选择 这点需要十分注意&…

Spring Boot应用集成Actuator组件以后怎么自定义端点暴露信息

一、 前言 在平时业务开发中,我们往往会在spring Boot项目中集成Actuator组件进行系统监控,虽然Actuator组件暴露的端点信息已经足够丰富了,但是特殊场景下,我们也需要自己暴露端点信息,此时应该怎么操作呢&#xff1…

Linux--ACL权限管理

一.ACL权限管理简介 ACL(Access Control List,访问控制列表)是一种文件权限管理机制,它提供了比传统的UGO(用户、组、其他)权限更灵活的权限设置方式。以下是ACL的一些主要功能: 针对特定用户或…

RabbitMQ(一):消息队列MQ

目录 1 消息队列MQ1.1 MQ简介1、什么是MQ2、MQ的优势流量削峰应用解耦异常处理数据分发分布式事务 3、消息中间件的弊端4、常用的MQ 1.2 MQ中几个基本概念1.3 MQ的通信模式1.4 消息的发布策略1.5 常用消息中间件协议1、AMQP协议2、MQTT协议3、OpenMessage协议4、kafaka协议 1 消…

C++之deque

一、vector与list的优缺点 vector的优点:下标的随机访问,尾插,尾删效率高。CPU高速缓存命中率高vector的缺点:扩容(效率,空间浪费),不适合头插头删。 连续的物理空间为他带来了优点也带来了缺点&#xff0c…

Spring事务失效场景

【事务的回滚仅仅对于unchecked的异常有效。对于checked异常无效。也就是说事务回滚仅仅发生在,出现RuntimeException或Error的时候。通俗一点就是:代码中出现的空指针等异常,会被回滚。而文件读写、网络超时问题等,spring就没法回…

2024-2-22 作业

作业要求: 复习前面知识点(指针、结构体、函数)整理思维导图顺序表(按位置插入、按位置删除和去重、重新写)理解链表的代码,尝试写一下链表的尾插和输出 1.复习前面知识点(指针、结构体、函数) 2.整理思维导图 3.顺序表(按位置插入、按位置删除和去重、…

172基于matlab的MPPT智能算法

基于matlab的MPPT智能算法,通过细菌觅食进行优化。算法引入了趋向性操作,用以进行局部范围内的最优寻找;引入了复制操作,用以避免种群更新盲目随机性,加快了算法的收敛速度;引入了迁徙操作用以避免算法陷入…

Linux进一步研究权限-----------ACL使用

一、使用情况 1.1、场景: 某个大公司,在一个部门,有一个经理和手下有两个员工,在操控一个Linux项目,项目又分为三期做,然而一期比较重要,经理带着员工做完了,公司就觉得技术难点已经做完攻克了&#xff0…

视频评论抓取软件|抖音数据抓取工具

最近我们推出了一款基于C#语言开发的工具。这款工具提供了丰富的功能,旨在帮助用户轻松获取抖音视频内容。让我们一起来详细介绍一下这款工具的主要功能模块: 1. 批量视频提取: 工具提供了便捷的批量视频提取功能,用户只需输入关…

Vue学习之计算属性

模板中的表达式虽然方便,但也只能用来做简单的操作。如果在模板中写太多逻辑,会让模板变得臃肿,难以维护。比如说,我们有这样一个包含嵌套数组的对象: const author reactive({name: John Doe,books: [Vue 2 - Advan…

Windows环境下使用SSH的开源图形化SFTP工具客户端 简介和基本使用

在Windows环境下,有许多开源的图形化SFTP工具客户端可以使用,其中比较受欢迎的是WinSCP和FileZilla。下面我将分别介绍这两个工具的基本信息和使用方法。 WinSCP WinSCP是一个Windows环境下使用的开源图形化SFTP客户端,它也支…

06 Qt自绘组件:Switch动画开关组件

系列文章目录 01 Qt自定义风格控件的基本原则-CSDN博客 02 从QLabel聊起:自定义控件扩展-图片控件-CSDN博客 03 从QLabel聊起:自定义控件扩展-文本控件-CSDN博客 04 自定义Button组件:令人抓狂的QToolButton文本图标居中问题-CSDN博客 0…

第一个 Angular 项目 - 添加服务

第一个 Angular 项目 - 添加服务 这里主要用到的内容就是 [Angular 基础] - service 服务 提到的 前置项目在 第一个 Angular 项目 - 动态页面 这里查看 想要实现的功能是简化 shopping-list 和 recipe 之间的跨组件交流 回顾一下项目的结构: ❯ tree src/app/…

Linux---权限管理(ACL权限、特殊位和隐藏属性)

目录 1.ACT权限 1.1什么是ACT权限 1.2ACT图解 2.操作步骤 2.1添加测试目录、用户、组,并将用户添加到组 2.2修改目录的所有者和所属组 2.3设定权限 2.4为临时用户分配权限 2.4.1添加临时用户 2.4.2为临时用户分配特定权限 2.4.3查看目录权限,注…