代码随想录算法训练营第50天|123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV

文章目录

  • 123.买卖股票的最佳时机III
    • 思路
    • 代码
  • 188.买卖股票的最佳时机IV
    • 思路
    • 代码

123.买卖股票的最佳时机III

题目链接:123.买卖股票的最佳时机III
文章讲解:代码随想录|123.买卖股票的最佳时机III
视频讲解:123.买卖股票的最佳时机III

思路

1.本题最多可以完成两笔交易,那么一共有五个状态:
dp[i][0]:不持有
dp[i][1]:第一次持有(已经买了或今天购买第一次股票)
dp[i][2]:第一次不持有(已经卖了或今天卖掉第一次股票)
dp[i][3]:第二次持有
dp[i][4]:第二次不持有
2.状态转移
dp[i][0] = dp[i-1][0]
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
3.初始化
dp[0][0] = 0;
dp[0][1] = - prices[0]
dp[0][2] = - prices[0] 相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减
dp[0][3] = 0
4.从前向后遍历
5.在这里插入图片描述
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

188.买卖股票的最佳时机IV

题目链接:188.买卖股票的最佳时机IV
文章讲解:代码随想录|188.买卖股票的最佳时机IV

思路

最多可以完成k笔交易,思路跟上题一样

达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

然后类比剩下的状态:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

代码

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/407526.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码

前言 如果你之前没有做过数据压缩&#xff0c;或者想要了解数据压缩的原理&#xff0c;那么这编文章将会帮到你。这编文章将会带你彻底了解哈夫曼编码原理&#xff0c;这种编码方式常用作的图片无损压缩&#xff0c;和ZIP的等压缩存储。 思考&#xff0c;计算机的存储与解析获…

消息中间件篇之RabbitMQ-延时队列

一、延时队列 延迟队列&#xff1a;进入队列的消息会被延迟消费的队列。 场景&#xff1a;超时订单、限时优惠、定时发布。 延迟队列死信交换机TTL&#xff08;生存时间&#xff09;。 二、死信交换机 当一个队列中的消息满足下列情况之一时&#xff0c;可以成为死信&#xf…

LVS的工作模式及其原理

1、LVS 介绍 &#xff08;1&#xff09;LVS 是Linux Virtual Server的简称&#xff0c;也就是 Linux 虚拟服务器, 是一个由章文嵩博士发起的自由软件项目&#xff0c;它的官方站点是www.linuxvirtualserver.org。现在LVS已经是 Linux标准内核的一部分&#xff0c;因此性能较高…

注册中心 Service Discovery --- Intro

注册中心 Service Discovery --- Intro 为什么需要注册中心注册中心的原理常用的注册中心注册中心的高可用 为什么需要注册中心 在微服务架构中&#xff0c;系统被拆分成了若干个独立的服务&#xff0c;因此服务之间需要进行通信和协作。为了实现服务的发现和调用&#xff0c;需…

一周学会Django5 Python Web开发-Django5二进制文件下载响应

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计25条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

CrossOver 24.0.0 for mac 震撼发布 2024最新下载安装详细图文教程

2024年2 月 23 日消息&#xff0c;CodeWeavers 近日发布了 CrossOver 24 版本更新&#xff0c;基于近期发布的 Wine 9.0&#xff0c;不仅兼容更多应用和游戏&#xff0c;还初步支持运行 32 位应用程序。 苹果在 macOS Catalina 系统中移除对 32 位软件的支持之后&#xff0c;在…

08 Redis之集群的搭建和复制原理+哨兵机制+CAP定理+Raft算法

5 Redis 集群 2.8版本之前, Redis采用主从集群模式. 实现了数据备份和读写分离 2.8版本之后, Redis采用Sentinel哨兵集群模式 , 实现了集群的高可用 5.1 主从集群搭建 首先, 基本所有系统 , “读” 的压力都大于 “写” 的压力 Redis 的主从集群是一个“一主多从”的读写分…

K线实战分析系列之三:吞没形态

K线实战分析系列之三&#xff1a;吞没形态 一、吞没形态二、看涨吞没形态三、看跌吞没形态四、吞没形态判别标准 一、吞没形态 两根或两根以上的K线形成的组合形态&#xff0c;吞没形态就是一种主要的反转形态。 这个形态由两根K线组成&#xff0c;前短后长&#xff0c;一阴一…

Python爬虫-存储到csv乱码-使用utf-8-sig编码

代码 import requests import csvdef get_data():url https://careers.tencent.com/tencentcareer/api/post/Query?timestamp1708743664770&countryId&cityId&bgIds&productId&categoryId&parentCategoryId&attrId&keywordpython&pageIn…

保姆级教程!安利一款Kali Linux 安装 + 获取 root 权限 + 远程访问!

一、什么是Kali kali是linux其中一个发行版&#xff0c;基于Debian&#xff0c;前身是BackTrack&#xff08;简称BT系统&#xff09;。kali系统内置大量渗透测试软件&#xff0c;可以说是巨大的渗透系统&#xff0c;涵盖了多个领域&#xff0c;如无线网络、数字取证、服务器、…

构建未来新零售平台的设计与实现的总结

随着科技的飞速发展和消费者需求的不断变化&#xff0c;新零售已经成为零售行业的新趋势。在这个数字化时代&#xff0c;构建一个高效、智能、一体化的新零售平台架构至关重要。本文将探讨如何设计和实现一个具备创新性和竞争力的新零售平台。 引言&#xff1a; 新零售是指利用…

十一、Qt数据库操作

一、Sql介绍 Qt Sql模块包含多个类&#xff0c;实现数据库的连接&#xff0c;Sql语句的执行&#xff0c;数据获取与界面显示&#xff0c;数据与界面直接使用Model/View结构。1、使用Sql模块 &#xff08;1&#xff09;工程加入 QT sql&#xff08;2&#xff09;添加头文件 …

面试redis篇-05双写一致

原理 双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致 读操作:缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间写操作:延迟双删方案一:分布式锁,一致性要求高

C语言之mkdtemp()特定占位符:XXXXXX 用法实例(八十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

2.deeplabv3+的主干网络(mobilenet网络)

deeplabv3的论文中用了resnet网络&#xff0c;在这里用轻量级网络mobilenet替换resnet&#xff0c;下面分别是两个网络的代码。 1.mobilenet网络 代码如下&#xff1a; import math import os import cv2 import numpy as np import torch import torch.nn as nn import tor…

STM32_DS18B20_1_芯片简介及初始化配置

DS18B20介绍 DS18B20数字温度计提供9位到12位摄氏度的温度测量&#xff0c;并具有非易失性&#xff0c;用户可编程的上下触发点的报警功能。DS18B20通过1线总线进行通信&#xff0c;根据定义&#xff0c;该总线只需要一条数据线&#xff0c;即可与中央微处理器进行通信…

NestJS入门7:增加异常过滤器

前文参考&#xff1a; NestJS入门1 NestJS入门2&#xff1a;创建模块 NestJS入门3&#xff1a;不同请求方式前后端写法 NestJS入门4&#xff1a;MySQL typeorm 增删改查 NestJS入门5&#xff1a;加入Swagger NestJS入门6&#xff1a;日志中间件 本文代码基于上一篇文章《…

Flink join详解(含两类API及coGroup、connect详解)

Flink SQL支持对动态表进行复杂而灵活的连接操作。 为了处理不同的场景&#xff0c;需要多种查询语义&#xff0c;因此有几种不同类型的 Join。 默认情况下&#xff0c;joins 的顺序是没有优化的。表的 join 顺序是在 FROM 从句指定的。可以通过把更新频率最低的表放在第一个、…

Redis可视化工具——RedisInsight

文章目录 1. 下载2. 安装3. RedisInsight 添加 Redis 数据库4. RedisInsight 使用 RedisInsight 是 Redis 官方出品的可视化管理工具&#xff0c;支持 String、Hash、Set、List、JSON 等多种数据类型的管理&#xff0c;同时集成了 RedisCli&#xff0c;可进行终端交互。 1. 下载…

【数据结构和算法初阶(C语言)】时间复杂度(衡量算法快慢的高端玩家,搭配例题详细剖析)

目录 1.算法效率 1.1如何衡量一个算法的好坏 1.2 算法的复杂度 2.主菜-时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.2.1算法的最好&#xff0c;最坏和平均的情况 3.经典时间复杂度计算举例 3.1计算冒泡排序的时间复杂度 3.2计算折半查找的时间复杂度 3.…
最新文章