数据结构链表力扣例题AC(3)——代码以及思路记录

160. 相交链表

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

AC写法一

struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {
    //思路基本一样
    struct ListNode* curA = headA;
    struct ListNode* curB = headB;
    int lenA = 0,lenB = 0;
    //先计算两个的长度
    while(curA)
    {
        curA = curA->next;
        lenA++;
    }
    while(curB)
    {
        curB = curB->next;
        lenB++;
    }
    //遍历结束后回到头结点
    curA = headA;
    curB = headB;
    //计算差距,并开始走差距步,diff大小可以知道哪一个更长
    int diff = lenA - lenB;
    if(diff > 0) {
        while(diff > 0) {
            curA = curA->next;
            diff--;
        }
    } else if(diff < 0) {
        while(diff < 0) {
            curB = curB->next;
            diff++;
        }
    }
    //当两个不相等就继续走,但是要注意任意一个都不能为空
    while(curA && curB && curA != curB)
    {
        curA = curA->next;
        curB = curB->next;
    }
    //如果没有相交,两个也都走到了空
    //如果相交了此刻停留的位置也正好是相交初始节点,直接返回
    return curA;
}

AC写法二

struct ListNode* curA = headA;
    struct ListNode* curB = headB;
    int lenA = 0,lenB = 0;
    //lenA和lenB最后计数都会少了一个
    //但这道题目的是为了计算差值
    //同时都少一个不会对结果有影响
    while(curA->next)
    {
        curA = curA->next;
        lenA++;
    }
    while(curB->next)
    {
        curB = curB->next;
        lenB++;
    }
    //如果尾节点不相同,就没有相交。直接返回
    if(curA != curB)
    {
        return NULL;
    }
    //abs函数,计算绝对值
    int n = abs(lenA - lenB);
    struct ListNode* longList = headA, *shortList = headB;
    //上一步做了假设,如果假设不成立那就交换,后边就不用关心长的是哪条链表了
    if(lenB > lenA)
    {
        longList = headB;
        shortList = headA;
    }
    //长的先走差距步
    while(n--)
    {
        longList = longList->next;
    }
    while(longList != shortList)
    {
        longList = longList->next;
        shortList = shortList->next;
    return longList;

代码思路

上述两种代码的基本思路是一样的,具体细微的差别已经标注在代码中,接下来进行陈述:

首先看题寻找相交节点,那么这个链表不可能是 X 型,因为节点只能存储一个节点地址,所以只能是 Y 型或者不想交是平行,这一点看题目就可以明白。

最容易想到的暴力法,双指针,一个指向链表A,一个指向链表B,lenA进行链表A的遍历,将每一个节点与lenB当前所指的节点进行比较看是否相等,都不相等则lenB指向下一个LenA再进行比较,这样的方法时间复杂度为O(N^2)

还有一种时间复杂度为O(N)的方法。观察 Y 型结构,假设有两个指针指向两条链表的开始同时开始走并进行比较,由于链表相交前长度可能不一样,不一样的时候两个指针不可能相遇,但如果要两个指针相遇,相交之前有部分必须对应,那现在就是解决如何使两个指针按照我们需要的对应起来了,当较长的链表先走,走到剩余部分和较短链表一样时,两个指针一起走就解决了这个问题,而这部分先走的就是两条链表的长度差,所以两个指针都遍历一遍链表得出各自长度(遍历的同时可以比较尾节点是否相同,不相同直接说明没有相交),然后相减得出长度差,就可以实现如有交点两个指针一定会相遇的情况了。

141. 环形链表

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false 。

AC

bool hasCycle(struct ListNode *head) {
    struct ListNode* slow = head, * fast = head;

    while(fast && fast->next)
    {
        slow = slow->next;
        fast = fast->next->next;

        if(slow == fast){
            return true;
        }
    }
    return false;
}

代码思路

快慢指针绝绝绝绝绝绝!

环形链表难点在于不知道哪里开始的环,但是在环里,就没有前后之分,使用快慢指针,从头开始走,fast走两步slow走一步,当fast走进环的时候slow一定还在后边,但是当slow也进环以后,由于两者速度不一样,fast会追上slow,想象一下速滑运动中的套圈,而在环中的话,就一定会相遇。如果没有环,那么fast会指向空。只要思路正确并不难写。至于为什么while循环中还需要fast->next也不能为空,因为fast一次走两步,当fast指向尾节点的时候,没有fast->next->next.

为什么快指针每次走两步,慢指针走一步可以?

假设链表带环,两个指针最后都会进入环,快指针先进环,慢指针后进环。当慢指针刚 进环时,可能就和快指针相遇了,最差情况下两个指针之间的距离刚好就是环的长度。 此时,两个指针每移动一次,之间的距离就缩小一步,不会出现每次刚好是套圈的情 况,因此:在满指针走到一圈之前,快指针肯定是可以追上慢指针的,即相遇。

快指针一次走3步,走4步,...n步行吗?

142. 环形链表 II

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

AC

struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode* slow = head, *fast = head;

    while(fast && fast->next)
    {
        slow = slow->next;
        fast = fast->next->next;

        if(slow == fast)
        {
            struct ListNode* meet = slow;
            while(head != meet)
            {
                head = head->next;
                meet = meet->next;
            }
            return meet;
        }
    }
    return NULL;
}

代码思路

说明:

        H为链表的起始点,E为环入口点,M与判环时候相遇点

设:

        环的长度为R,H到E的距离为L E到M的距离为X

        则:M到E的距离为R-X

在判环时,快慢指针相遇时所走的路径长度:

        fast:L+X + nR

        slow:L + X

注意:

        1.当慢指针进入环时,快指针可能已经在环中绕了n圈了,n至少为1

        因为:快指针先进环走到M的位置,最后又在M的位置与慢指针相遇

        2.慢指针进环之后,快指针肯定会在慢指针走一圈之内追上慢指针

        因为:慢指针进环后,快慢指针之间的距离最多就是环的长度,而两个指针在移动时,每次它们至今的距离都缩减一步,因此在慢指针移动一圈之前快指针肯定是可以追上慢指针的

而快指针速度是满指针的两倍,因此有如下关系是:

        2 * (L + X)=L + X + nR

        L+X = nR

        L = nR - X (n为1,2,3,4..,n的大小取决于环的大小,环越小n越大)

        极端情况下,假设 n=1,此时:L = R -X

即:一个指针从链表起始位置运行,一个指针从相遇点位置绕环,每次都走一步,两个指针最终会在入口点的位置相遇

思路二:将meet的下一个节点meet->next交给一个新指针newhead,然后将meet的next置空,meet->next = NULL,此刻就将题转化为了链表相交问题,但是这种写代码更为复杂,此处不做尝试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/408388.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

利用LaTex批量将eps转pdf、png转eps、eps转png、eps转svg、pdf转eps

1、eps转pdf 直接使用epstopdf命令&#xff08;texlive、mitex自带&#xff09;。 在cmd中进入到eps矢量图片的目录&#xff0c;使用下面的命令&#xff1a; for %f in (*.eps) do epstopdf "%f" 下面是plt保存eps代码&#xff1a; import matplotlib.pyplot as…

嵌入式中数据结构二叉树详解与实现

树是数据结构中的重中之重&#xff0c;尤其以各类二叉树为学习的难点。在面试环节中&#xff0c;二叉树也是必考的模块。本文主要讲二叉树操作的相关知识&#xff0c;梳理面试常考的内容。请大家跟随小编一起来复习吧。 本篇针对面试中常见的二叉树操作作个总结&#xff1a; 前…

分享从零开始学习网络设备配置--任务5.1 组建直连式二层无线局域网

任务要求 &#xff08;1&#xff09;组建直连式二层无线局域网&#xff0c;网络拓扑图如图 &#xff08;3&#xff09;路由器、交换机和AC等网络设备端口IP地址规划如表 &#xff08;4&#xff09;组建直连式二层无线局域网&#xff0c;配置AP上线、WLAN业务参数和实现STA能正…

程序员的副业发展

前言 之前总有小伙伴问我&#xff0c;现在没有工作&#xff0c;或者想在空闲时间做一些程序员兼职&#xff0c;怎么做&#xff0c;做什么&#xff0c;能赚点外快 因为我之前发别的文章的时候有捎带着说过一嘴我做一些副业&#xff0c;这里就说一下我是怎么做的&#xff0c;都…

es6 中的生成器 generator / 迭代器 / async /await 到底是个啥,使用场景

生成器 generator 到底是个啥 是一个函数 可以用来遍历数据结构是解决异步编程的一种方案进行数据流的生成和控制协程和状态机返回一个生成器对象/可迭代对象 生成器对象&#xff1a; 生成器对象是由生成器函数返回的对象&#xff0c;它符合迭代器协议&#xff08;Iterator Pr…

异步框架Celery在Django中的运用

参考博客&#xff1a;https://www.cnblogs.com/pyedu/p/12461819.html 参考视频&#xff1a;01 celery的工作机制_哔哩哔哩_bilibili 定义&#xff1a;简单灵活、处理大量消息的分布式系统&#xff0c;专注于实时处理异步队列&#xff0c;支持任务调度 主要架构&#xff1a; …

【C++那些事儿】C++入门 | 命名空间 | 缺省参数 | 引用 | 内联函数 | auto关键字 | 范围for循环 | nullptr

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构冒险记 ✅C那些事儿 &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 前言1. C关键字(C98)2. 命名空间2.1 命名空间定义2.2 命名空间使用 3. C输入&输出4. 缺…

【Linux基础】vim、常用指令、组管理和组权限

Linux基础 1、目录结构2、vi和vim3、常用指令运行级别找回密码帮助指令时间日期指令搜索查找文件目录操作磁盘管理指令压缩和解压缩 4、组管理和组权限用户操作指令权限 1、目录结构 Linux的文件系统是采用级层式的树状目录结构&#xff0c;在此结构中的最上层是根目录“/”&a…

StarRocks——滴滴OLAP的技术实践与发展方向

原文大佬的这篇StarRocks实践文章整体写的很深入&#xff0c;介绍了StarRocks数仓架构设计、物化视图加速实时看板、全局字典精确去重等内容&#xff0c;这里直接摘抄下来用作学习和知识沉淀。 目录 一、背景介绍 1.1 滴滴OLAP的发展历程 1.2 OLAP引擎存在的痛点 1.2.1 运维…

K线实战分析系列之十:市场进入犹豫不定状态——孕线形态

K线实战分析系列之十&#xff1a;市场进入犹豫不定状态——孕线形态 一、重要反转形态二、其他反转形态三、孕线形态四、孕线形态和吞没形态的区别五、十字孕线形态六、总结孕线形态 一、重要反转形态 伞形线吞没形态乌云盖顶刺透形态启明星形态黄昏星形态十字启明星与十字黄昏…

Java之线程池:线程池常用类、接口;线程池执行流程,配置参数,分类

线程池 什么是线程池&#xff1f; 线程池&#xff1a;一种基于池化思想管理和使用线程的机制 线程池常用类和接口 ExecutorService接口&#xff1a;进行线程池的操作访问Executors类&#xff1a;创建线程池的工具类ThreadPoolExecutor及其子类&#xff1a;封装线程池的核心参…

K线实战分析系列之九:顶底判断——流星和倒锤子线

K线实战分析系列之九&#xff1a;顶底判断——流星和倒锤子线 一、流星线二、倒锤子线三、总结流星形态和倒锤子形态 一、流星线 主要特征是实体比较小&#xff0c;位于低端位置&#xff0c;带着长上影线&#xff0c;就像流星划过天际时&#xff0c;拖着一个长长的尾巴&#xf…

Unity(第三部)新手绘制地形

1、创建地形 游戏对象3d对象地形 2、功能 1、 红框内按键为创建相邻地形、点击后相近地形会呈现高亮框、点击高亮区域可以快速创建地形 每块地形面积是1km*1km 2、第二个按钮是修改地形 下面的选择是修改类型 选项含义描述Raise or Lower Terrain升高或降低地形单击左键可…

STM32 TCP实现OTA

芯片&#xff1a;stm32f407 开发平台&#xff1a;stm32cubeide 上位机开发平台&#xff1a;visual studio 2017 1. FLASH分配 将flash划分为四个部分&#xff1a; bootloader: 0x8000000-0x800ffff app1: 0x8010000-0x805ffff app2: …

GEE入门篇|遥感专业术语(实践操作3):时间分辨率(Temporal Resolution)

目录 时间分辨率&#xff08;Temporal Resolution&#xff09; 1.Landsat 2.Sentinel-2 时间分辨率&#xff08;Temporal Resolution&#xff09; 时间分辨率是指特定传感器图像流的重访时间或时间节奏&#xff0c;重访时间是指卫星连续访问地球表面同一位置…

程序员副业接单做私活避坑指南

最近有不少读者私信我想接私活&#xff0c;想赚外快。 这篇文章系统的分享了对接单做私活这件事情的思考&#xff0c;也给出一些干货建议。希望让大家少走一些弯路&#xff0c;不要被坑。 先说结论 不建议大家在接单这个事情上投入太大精力&#xff0c;如果你“贼心不改”&am…

Nginx基本操作

目录 引言 一、Nginx配置文件详解 &#xff08;一&#xff09;配置文件 &#xff08;二&#xff09;模块 二、全局配置文件 &#xff08;一&#xff09;关闭版本或修改版本 1.关闭版本号 2.修改版本信息 &#xff08;二&#xff09;修改启动的进程数 &#xff08;三&…

MongoDB之客户端工具与核心概念及基本类型篇

MongoDB之客户端工具与核心概念及基本类型篇 文章目录 MongoDB之客户端工具与核心概念及基本类型篇1. MongoDB是什么?1. 关于MongoDB2. 相关客户端工具1. MongoDB Compass2. Studio 3T3. Navicat for MongoDB4. NoSQL Manager for MongoDB Professional 2.MongoDB相关概念2.1 …

Linux安装JDK,Tomcat,MySQL的安装以及项目部署

一、jdk安装配置 传入资源 连接后&#xff0c;创建存放资源的文件&#xff0c;将jdk&#xff0c;tomcat&#xff0c;Mysql的压缩包复制到文件中。 输入命令: cd javaCloudJun/software (进入要文件中) 输入命令 : pwd (查看当前的文件路径) 将文件路径复制到左边的搜索框中…

接口测试实战--自动化测试流程

一、项目前期准备 常见项目软件架构: springMvc:tomcat里运行war包(在webapps目录下) springboot:java -jar xx.jar -xms(**) 运行参数 springCloud:k8s部署,使用kubectl create -f xx.yaml 接口自动化测试介入需越早越好,只要api定义好就可以编写自动化脚本; 某个…