Three.js 基础属性

三维坐标系

辅助观察坐标系

THREE.AxesHelper()的参数表示坐标系坐标轴线段尺寸大小,你可以根据需要改变尺寸。

// AxesHelper:辅助观察的坐标系
const axesHelper = new THREE.AxesHelper(150);
scene.add(axesHelper);

材质半透明设置

设置材质半透明,这样可以看到坐标系的坐标原点。

const material = new THREE.MeshBasicMaterial({
    color: 0x0000ff, //设置材质颜色
    transparent:true,//开启透明
    opacity:0.5,//设置透明度
});

AxesHelper的xyz轴

three.js坐标轴颜色红R、绿G、蓝B分别对应坐标系的xyz轴,对于three.js的3D坐标系默认y轴朝上

改变相机参数——预览新的渲染效果

相机放在x轴负半轴,目标观察点是坐标原点,这样相当于相机的视线是沿着x轴正方向,只能看到长方体的一个矩形平面。

camera.position.set(-1000, 0, 0);
camera.lookAt(0, 0, 0);

// 相机视线沿着x轴负半轴,mesh位于相机后面,自然看不到
camera.position.set(-1000, 0, 0);
camera.lookAt(-2000, 0, 0);

相机far偏小,mesh位于far之外,物体不会显示在画布上。

const camera = new THREE.PerspectiveCamera(30, width / height, 1, 300);

 光源对物体表面影响 

实际生活中物体表面的明暗效果是会受到光照的影响,在threejs中,咱们用网格模型Mesh模拟生活中物体,所以threejs中模拟光照Light对物体表面的影响,就是模拟光照Light对网格模型Mesh表面的影响。

受光照影响材质

threejs提供的网格材质,有的受光照影响,有的不受光照影响。

基础网格材质MeshBasicMaterial不会受到光照影响。 

//MeshBasicMaterial不受光照影响
const material = new THREE.MeshBasicMaterial(); 

漫反射网格材质MeshLambertMaterial 会受到光照影响,该材质也可以称为Lambert网格材质

一个立方体使用MeshLambertMaterial材质,不同面和光线夹角不同,立方体不同面就会呈现出来不同的明暗效果。

//MeshLambertMaterial受光照影响
const material = new THREE.MeshLambertMaterial(); 

光源简介

点光源

点光源PointLight 可以类比为一个发光点,就像生活中一个灯泡以灯泡为中心向四周发射光线。

//点光源:两个参数分别表示光源颜色和光照强度
// 参数1:0xffffff是纯白光,表示光源颜色
// 参数2:1.0,表示光照强度,可以根据需要调整
const pointLight = new THREE.PointLight(0xffffff, 1.0);

pointLight.intensity = 1.0;//光照强度

点光源辅助观察PointLightHelper 

通过点光源辅助观察对象PointLightHelper可视化点光源。预览观察:可以借助相机控件OrbitControls旋转缩放三维场景便于预览点光源位置

// 光源辅助观察
const pointLightHelper = new THREE.PointLightHelper(pointLight, 10);
scene.add(pointLightHelper);

pointLight.position.set(100, 60, 50);
// 改变点光源位置,使用OrbitControls辅助观察
pointLight.position.set(-400, -200, -300);

 光源衰减

随机距离的改变,光线会衰减,越来越弱,光源衰减属性.decay默认值是2.0,如果你不希望衰减可以设置为0.0

pointLight.decay = 0.0;//设置光源不随距离衰减

光源位置

意光源位置尺寸大小:如果你希望光源照在模型的外表面,那你就需要把光源放在模型的外面。

//点光源位置
pointLight.position.set(0, 100, 0);//点光源放在y轴上

光源添加到场景

光源和网格模型Mesh对应一样是三维场景的一部分,自然需要添加到三维场景中才能起作用。

scene.add(pointLight); //点光源添加到场景中

改变光源位置,观察网格模型表面的明暗变化。 

pointLight.position.set(400, 200, 300); 

环境光设置

环境光AmbientLight没有特定方向,只是整体改变场景的光照明暗。

//环境光:没有特定方向,整体改变场景的光照明暗
const ambient = new THREE.AmbientLight(0xffffff, 0.4);
scene.add(ambient);

 平行光

平行光DirectionalLight 就是沿着特定方向发射。

// 平行光
const directionalLight = new THREE.DirectionalLight(0xffffff, 1);
// 设置光源的方向:通过光源position属性和目标指向对象的position属性计算
directionalLight.position.set(80, 100, 50);
// 方向光指向对象网格模型mesh,可以不设置,默认的位置是0,0,0
directionalLight.target = mesh;
scene.add(directionalLight);

平行光辅助观察DirectionalLightHelper

通过点光源辅助观察对象DirectionalLightHelper 可视化点光源。

// DirectionalLightHelper:可视化平行光
const dirLightHelper = new THREE.DirectionalLightHelper(directionalLight, 5,0xff0000);
scene.add(dirLightHelper);

 平行光与Mesh表面光线反射规律

平行光照射到网格模型Mesh表面,光线和模型表面构成一个入射角度,入射角度不同,对光照的反射能力不同。

光线照射到漫反射网格材质MeshLambertMaterial 对应Mesh表面,Mesh表面对光线反射程度与入射角大小有关。

// 对比不同入射角,mesh表面对光照的反射效果
directionalLight.position.set(100, 0, 0);
directionalLight.position.set(0, 100, 0);
directionalLight.position.set(100, 100, 100);
directionalLight.position.set(100, 60, 50);
//directionalLight.target默认指向坐标原点

相机控件OrbitControls

OrbitControls使用

  • 旋转:拖动鼠标左键
  • 缩放:滚动鼠标中键
  • 平移:拖动鼠标右键

引入扩展库OrbitControls.js 

<script type="importmap">
    {
		"imports": {
			"three": "../../../three.js/build/three.module.js",
            "three/addons/": "../../../three.js/examples/jsm/"
		}
	}
</script>

// 引入轨道控制器扩展库OrbitControls.js
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';

使用OrbitControls

// 设置相机控件轨道控制器OrbitControls
const controls = new OrbitControls(camera, renderer.domElement);
// 如果OrbitControls改变了相机参数,重新调用渲染器渲染三维场景
controls.addEventListener('change', function () {
    renderer.render(scene, camera); //执行渲染操作
});//监听鼠标、键盘事件

OrbitControls本质

OrbitControls本质上就是改变相机的参数,比如相机的位置属性,改变相机位置也可以改变相机拍照场景中模型的角度,实现模型的360度旋转预览效果,改变透视投影相机距离模型的距离,就可以改变相机能看到的视野范围。

controls.addEventListener('change', function () {
    // 浏览器控制台查看相机位置变化
    console.log('camera.position',camera.position);
});

动画渲染循环

请求动画帧window.requestAnimationFrame

// requestAnimationFrame实现周期性循环执行
// requestAnimationFrame默认每秒钟执行60次,但不一定能做到,要看代码的性能
let i = 0;
function render() {
    i+=1;
    console.log('执行次数'+i);
    requestAnimationFrame(render);//请求再次执行函数render
}
render();

threejs旋转动画

动画说白了就是一张张照片,连起来依次展示,这样就形成一个动画效果,只要帧率高,人的眼睛就感觉不到卡顿,是连续的视频效果。

const renderer = new THREE.WebGLRenderer();
renderer.setSize(width, height);
// renderer.render(scene, camera); //执行渲染操作
document.body.appendChild(renderer.domElement);

// 渲染函数
function render() {
    renderer.render(scene, camera); //执行渲染操作
    mesh.rotateY(0.01);//每次绕y轴旋转0.01弧度
    requestAnimationFrame(render);//请求再次执行渲染函数render,渲染下一帧
}
render();

计算两帧渲染时间间隔和帧率

// 渲染循环
const clock = new THREE.Clock();
function render() {
    const spt = clock.getDelta()*1000;//毫秒
    console.log('两帧渲染时间间隔(毫秒)',spt);
    console.log('帧率FPS',1000/spt);
    renderer.render(scene, camera); //执行渲染操作
    mesh.rotateY(0.01);//每次绕y轴旋转0.01弧度
    requestAnimationFrame(render);//请求再次执行渲染函数render,渲染下一帧
}
render();

渲染循环和相机控件OrbitControls

设置了渲染循环,相机控件OrbitControls就不用再通过事件change执行renderer.render(scene, camera);,毕竟渲染循环一直在执行renderer.render(scene, camera);

全屏渲染 

// width和height用来设置Three.js输出的Canvas画布尺寸(像素px)
const width = window.innerWidth; //窗口文档显示区的宽度作为画布宽度
const height = window.innerHeight; //窗口文档显示区的高度作为画布高度
const renderer = new THREE.WebGLRenderer();
document.body.appendChild(renderer.domElement);

canvas画布宽高度动态变化

// onresize 事件会在窗口被调整大小时发生
window.onresize = function () {
    // 重置渲染器输出画布canvas尺寸
    renderer.setSize(window.innerWidth, window.innerHeight);
    // 全屏情况下:设置观察范围长宽比aspect为窗口宽高比
    camera.aspect = window.innerWidth / window.innerHeight;
    // 渲染器执行render方法的时候会读取相机对象的投影矩阵属性projectionMatrix
    // 但是不会每渲染一帧,就通过相机的属性计算投影矩阵(节约计算资源)
    // 如果相机的一些属性发生了变化,需要执行updateProjectionMatrix ()方法更新相机的投影矩阵
    camera.updateProjectionMatrix();
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/409395.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vulnhub靶机:Hacker_Kid

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;10.0.2.15&#xff09; 靶机&#xff1a;Hacker_Kid&#xff08;10.0.2.42&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://download.vulnhub.com/hac…

Python和Jupyter简介

在本notebook中&#xff0c;你将&#xff1a; 1、学习如何使用一个Jupyter notebook 2、快速学习Python语法和科学库 3、学习一些IPython特性&#xff0c;我们将在之后教程中使用。 这是什么&#xff1f; 这是只为你运行在一个个人"容器"中的一个Jupyter noteboo…

蓝桥杯备战刷题(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…

【前端素材】推荐优质后台管理系统Start Admin平台模板(附源码)

一、需求分析 后台管理系统是一种用于管理网站、应用程序或系统的工具&#xff0c;它通常作为一个独立的后台界面存在&#xff0c;供管理员或特定用户使用。下面详细分析后台管理系统的定义和功能&#xff1a; 1. 定义 后台管理系统是一个用于管理和控制网站、应用程序或系统…

Github开源贡献者的狂欢——教你如何免费领取价值$200的Starknet空投

前言&#xff1a; 2024 又迎来了四年一度的 BTC 减半时刻&#xff0c;币圈仿佛一下又热闹了起来&#xff0c;这几天有一个新的基于 ETH 的项目诞生了&#xff1a;StarkNet&#xff0c;代号 STRK&#xff0c;凡是在前 5000 个开源项目贡献过至少 3 个 commit 的程序猿都会被空投…

C#,数组数据波形排序(Sort in Wave Form)的朴素算法与源代码

1 波形排序 所谓“波形排序”就是一大一小。 将n个身高互不相同的人排成一行 ,对于每个人 ,要求他要么比相邻的人均高 ,要么比相邻的人均矮 ,问共有多少种排法 ,这一问题称为波形排列问题。 2 源程序 using System; using System.Collections; using System.Collections.Gen…

Makefile静态库动态库的构建和链接之工程实用篇

静态库和动态库的构建和链接 现有C工程目录结构如下&#xff1a; add.h int add(int a, int b);add.cpp #include "add.h"int add(int a, int b) {return ab; }main.cpp #include <iostream> #include "add.h"int main() {std::cout << a…

Spring Boot 项目集成camunda流程引擎

使用camunda开源工作流引擎有&#xff1a;通过docker运行、使用springboot集成、部署camunda发行包、基于源代码编译运行等多种方式。 其中&#xff0c;通过源代码编译运行的方式最为复杂&#xff0c;具体参考&#xff1a;https://lowcode.blog.csdn.net/article/details/1362…

个人博客系列-前端部署-创建框架(4)

项目环境介绍 Vue3 Vite TypeScript 服务器&#xff1a;阿里云contos node版本&#xff1a;v18.18.2 npm版本&#xff1a;v10.2.4 执行下面一行命令&#xff0c;创建vue3框架 npm create vuelatest修改端口&#xff1a;9528&#xff0c; 此步骤可以忽略&#xff08;使用默…

云呐矿井智能化运维工是什么?智能机器人运维岗位

煤矿智能运维是指利用先进的信息技术和自动控制&#xff0c;在煤矿生产过程中对煤矿设备进行监测、维护和管理。其职责和工作任务主要包括: 工作环境:  面对复杂的地质条件和极端的气候环境&#xff0c;煤矿智能运维工程师往往需要在地下煤矿、监测中心等环境中工作。因此&a…

MCU多核异构通信原理

摘要&#xff1a; 本文结合瑞萨RZ/G2L 多核处理器&#xff0c;给大家讲述一下多核异构设计及通信的原理。 随着电子技术的不断发展&#xff0c;以及市场需求的日益增长&#xff0c;嵌入式系统不仅要求执行复杂的控制任务&#xff0c;还需要实时地采集和处理数据。 为了满足这…

游戏配置内存“瘦身”策略

背景 游戏配置数据绝对是游戏服务器进程的内存大头,有些游戏服务器单纯数据配置的容量就超过一个G。因此,这部分内存优化也就放在首要位置了。 优化策略 在《服务器进程如何降低内存》一文中,我们讲述了可以通过“优化游戏配置缓存”来降低游戏服务器进程的内存使用量。本…

基于协同过滤算法的体育商品推荐系统

摘要 本文深入探讨了基于协同过滤算法的体育商品推荐系统的构建方法及其在电子商务中的重要性。首先&#xff0c;介绍了协同过滤算法的基本原理&#xff0c;包括用户-商品矩阵、相似度度量和推荐生成。其次&#xff0c;探讨了协同过滤算法在体育商品推荐中的两种主要应用方式&a…

sql-labs第46关(order by盲注脚本)

一、环境 网上有自己找 二、解释 order by 注入我们看他的true和false来进行注入出来 二、实操 让我们用sort 看看源码 最终我们的id是放到order by后面了 如果我们直接用列去排序 ?sortusername/password username&#xff1a; password&#xff1a; 可以看到顺序是不…

IO进程线程:通信

1.定义互斥锁 #include<myhead.h>int num520;//临界资源//1.创建一个互斥锁变量 pthread_mutex_t mutex;//定义任务&#xff11;函数 void *task1(void *arg) {printf("11111111111111\n");//3.获取锁资源pthread_mutex_lock(&mutex);num1314;sleep(3);pr…

数据结构与算法:红黑树讲解

关于红黑树&#xff0c; 这篇讲的更详细易懂。 https://www.cnblogs.com/jakelin/p/14324966.html 一颗平衡的二叉搜索树的任意节点平均查找效率为树的高度h&#xff0c;即O(lgn)。 但是如果二叉搜索树的失去平衡&#xff08;元素全在一侧&#xff09;&#xff0c;搜索效率就…

牛客周赛 Round 33 解题报告 | 珂学家 | 思维场

前言 整体评价 感觉这场更偏思维&#xff0c;F题毫无思路&#xff0c;但是可以模拟骗点分, E题是dij最短路. A. 小红的单词整理 类型: 签到 w1,w2 input().split() print (w2) print (w1)B. 小红煮汤圆 思路: 模拟 可以从拆包的角度去构建模拟 注意拆一包&#xff0c;可以…

如何增加层次厚度?

Q 老师&#xff0c;我在做一个斧头武器&#xff0c;如何在平面上增加厚度和层次呢&#xff1f; A 选中这几个线&#xff0c;点连接就会出现中线&#xff0c;把中线稍作调整即可~

Springboot+vue的社区医疗综合服务平台(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的社区医疗综合服务平台&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的社区医疗综合服务平台&#xff0c;采用M&#xff08;m…

数据分析这么卷吗!AI几分钟做完我半天的工作,这让人怎么办!

随着AI技术的飞速发展&#xff0c;人工智能领域正在经历一场前所未有的革命。无论是ChatGPT还是谷歌的巴德&#xff0c;以及国内诸如文心一言、ChatGLM等产品的涌现&#xff0c;都在不断地证明着这一点。这些技术不仅在推动着各行业的发展&#xff0c;更在不断地改变着我们的生…
最新文章