从ChatGPT到Sora,来了解大模型训练中的存储

1 从chatGPT到Sora

    2022年底,OpenAI推出人工智能聊天机器人ChatGPT,开启了大模型领域的“竞速跑”模式。2024年2月15日,随着视频生成模型Sora的横空出世,OpenAI再度掀起热潮。

     Sora将视频生成内容拉到了一个全新的高度,逼真的视频效果刷新了社会对AI能力边界的认知。它的问世,就如同一枚深水炸弹,瞬间引爆全球科技圈。

    不少业内人士直言,Sora的到来标志着一次质的飞跃。英国皇家工程院国际院士、欧洲科学院院士许彬(Pan Hui)在接受《每日经济新闻》记者采访时表示,“目前Sora在视频生成品质上面绝对是无可匹敌的。Sora生成的视频可以从小特写切大全景,变换不同的机位。”

2 大模型训练中的存储

    清华大学舒继武团队分析了大模型训练的存储挑战,指出大模型训练的存储需求大,且具有独特的计算模式、访存模式、数据特征,这使得针对互联网、大数据等应用的传统存储技术在处理大模型训练任务时效率低下,且容错开销大;分别阐述了针对大模型训练的3类存储加速技术与2类存储容错技术;并进行了总结和展望。

2.1 大模型训练的存储挑战

    大模型训练的存储容量需求高. 大模型不仅参数量庞大,在训练的每一步中还需要保存前向传播过程中产生的激活量和用于参数更新的优化器。

    首先是模型参数(model parameters),大规模深度学习模型的参数量爆炸式增长,且这种趋
势仍在持续。

   其次是激活(activation)量,根据反向传播算法,前向传播阶段产生的激活量需要被先保存,然后在反向传播时用于计算梯度信息,最后在梯度计算结束后被释放. 在大模型训练过程中,激活量所占的存储空间庞大. 根据研究发现,激活量在训练过程中的存储开销占总存储开销的 70%。

    最后是优化器(optimizer)。 计算得到的梯度被传输到优化器中以更新得到新版本的模型参数。

    此外,大模型训练过程中的容错需求高. 大模型训练会使用大量 GPU,这提高了故障的可能性。

    传统支持大规模数据存储系统一方面未充分利用大模型训练中的计算模式、访存模式和数据特征,另一方面不适用于大模型数据更新数据量大、更新频繁的特点,严重影响大模型训练的效率:

    1)传统的分布式存储技术不适用于大模型训练的计算模式:一方面,大模型训练常使用的 GPU具有计算资源和存储资源强耦合的特点,需要考虑计算任务与存储之间的依赖关系;另一方面,传统的分布式存储技术未利用大模型训练中各个任务间的数据依赖关系进行优化,可能导致相邻任务间的数据传输方案非最优。

    2)传统的异构存储技术对大模型训练中的访存模式不感知,未利用这些访存模式设计数据的预取和传输策略,因而无法达到训练的最佳性能。

    3)传统的存储缩减技术不适用于大模型训练中的数据特征,大模型数据稠密度高,难以通过传统的压缩方法缓解存储压力。

   4)传统的存储容错技术在大模型训练场景下容错开销大,大模型训练中的数据量庞大,并且数据更新频繁。
 

2.2 向大模型的存储加速技术

     在存储性能方面,现有工作提出了针对大模训练的存储加速技术. 这些技术可以总结为 3 类:基
于大模型计算模式的分布式显存管理技术、大模型训练访存感知的异构存储技术和大模型数据缩减技术。
 

2.2.1 基于大模型计算模式的分布式显存管理技术

    大模型训练中的计算模式可以分为层间并行和层内并行。这 2 种计算模式对应不同的任务划分方式和任务依赖关系. 其中,层间并行以张量为粒度将模型划分到多张 GPU 上,单个计算任务仅依赖于负责计算相邻张量的任务;层内并行则是以张量的某一维度为粒度,将单个张量的计算拆分到多张 GPU 上,单个计算任务依赖于多个负责计算相邻张量分片的任务。

(1)基于模型层间并行的分布式显存管理技术

    模型层间分片方式是以张量为粒度,将模型数据划分成多个小片,并分布式地存储到多张 GPU 中,此类工作在训练过程中传输的数据类型可以分为2 类:模型数据和激活量. 在传输模型数据的工作中,每张 GPU 负责所有模型分片的训练;在训练前,所需的模型数据被传输到负责计算的 GPU 显存中;训练结束后,GPU 将释放不由此 GPU 存储的模型分片所占的显存空间. 在传输激活量的工作中,每张 GPU 仅负责训练显存中存储的模型分片,并传输相邻分片的激活量。

    ZeRO-DP是微软提出的大模型训练系统,它采用数据并行的方式对模型进行训练. 为满足模型训练过程中对存储空间的需求,ZeRO-DP 采用层间分片的方式存储模型,并训练过程中采用在 GPU 间传输模型数据的方案。

    GPipe是谷歌提出的基于流水线并行的模型训练框架. 它首先使用一个样本中所有子样本进行前向传播,接着对所有子样本进行反向传播,最后根据此样本训练得到的梯度进行参数更新. 由于前向传播和反向传播的顺序不同,并且需要在使用一个样本完成训练后暂停模型训练以对参数进行更新,GPipe 产生了较多的计算空闲时间(即气泡)。

    PipeDream是英伟达公司提出的基于流水线并行的模型训练模式,它在流水线中将前向传播和反向传播交替进行(1 forward 1 backward,1F1B),解决了 GPipe 中的气泡问题. 在 PipeDream 中,某一子样本完成前向传播传播后会立即开始此子样本的反向传播. 当 PipeDream 启动并稳定后,流水线中将不存在气泡。但是, PipeDream 中需要存放多个版本的参数,增加了额外的存储开销。

(2)基于模型层内并行的分布式显存管理技术

    张量并行采用模型层内分片的策略,该策略以张量的某一维度为粒度对模型进行切分,并将切分
得到的分片存储在多张 GPU 中. 相比于模型的层间分片以层为粒度存储数据,模型的层内分片将某一层的数据以更细的粒度拆分. 因此,模型的层内分片可将单层的数据存储到更多 GPU 中,从而支持单层数据量更大的模型。

    根据是否切分输入的张量和张量存放的方式,张量并行分为 4 种不同的模式. 其中每种张量并行的存储开销和通信开销的对比如表所示。

    Megatron是由英伟达公司提出的一种基于Transformer 结构的大模型训练框架,它使用了 1D 张量并行策略。

2.2.2 大模型训练访存感知的异构存储技术

    若仅使用 GPU 显存存储模型数据,需要更大规模的 GPU 集群以满足更大规模模型训练时的存储需求。

     除 GPU 显存外,训练服务器中包含有各种异构的存储资源,如 DRAM 和 SSD。 模型参数、优化器数据和训练产生的中间结果可以被存储到这些异构存储资源中,以提高模型训练的规模。

    但是,异构存储系统的数据移动开销高. 虽然GPU 内的存储资源的读写带宽高,以匹配其计算资源的性能,但与外部存储资源之间的互联带宽低. 这导致数据在 GPU 与外部设备间的搬移开销大。

    现有工作利用大模型训练中访存模式可预测的特性,减少使用异构存储介质带来的数据移动开销.在指定样本批大小等其他模型训练的超参数后,大模型训练中的每一个操作的计算开销和存储开销的变化相对固定. 并且大模型的模型结构固定,这使得每一个计算操作的顺序也随之固定. 因此,根据训练第一个样本批时获得的每个操作的访存时刻和访存大小信息,可以预测后续模型训练过程中的访存模式。

(1)基于 DRAM 的异构存储技术

    相比于 GPU 显存,DRAM 的容量更大,因此,可以将模型数据或者训练的中间结果卸载到 DRAM 中,并在计算前按需将卸载数据上传到 GPU 显存之中,以支持更大规模的模型训练。

    vDNN是首个提出使用 DRAM 扩充显存以支持更大规模模型训练的工作。

    SwapAdvisor 从张量的角度对 DNN 模型中计算和存储进行建模,以支持模型训练中各种不同类型的模型数据的卸载;并采用遗传算法搜索卸载和预取的近似最优方案。

    ZeRO-Offload[30] 是首个利用异构存储方案的分布式训练框架. ZeRO-Offload 采用与 ZeRO-DP 类似的训练流程,但是将模型数据和参数更新的过程卸载到 DRAM 和 CPU 中。

    Mobius是清华大学于 2023 年提出的基于消费级 GPU 服务器的大模型训练系统。Mobius提出了基于流水线并行的异构存储训练策略。

(2)基于 SSD 的异构存储技术

    随着模型规模的增长,模型数据量和中间结果到达了 TB 量级. 现有工作尝试将模型数据和中间变量卸载到 SSD 以支持更大规模的模型的训练. 相较于 DRAM,SSD 的容量更大、价格与能耗更低,可以支持更大规模的模型训练,但 SSD 的读写带宽低,给模型训练带来了新的挑战。

    FlashNeuron将模型参数卸载到 SSD 中. 为最小化卸载带来的开销,FlashNeuron 设计了离线的卸载选择策略,并提出了 GPU 直访 SSD 的数据传输方案。

    ZeRO-Infinity将模型数据存储在 SSD 中,它沿用了 ZeRO 训练模式,同时也是使用了 ZeRO-Offload中的 CPU 更新参数的策略。

2.2.3 大模型数据缩减技术

    传统的数据缩减技术往往通过压缩的方式减少存储开销, 但是大模型的数据稠密[难以被压缩。

    现有工作根据大模型数据特征,从 2 方面对大模型训练中的数据进行缩减:增加计算量和牺牲模型精度. 具体地,激活量检查点与重算算法(checkpoint andrecomputation)通过增加计算量减少了所需存储的激活量数据;混合精度与量化通过牺牲模型精度以减低模型数据和中间变量的大小。

3.4 总结

     下表所示的各类存储技术在单步训练中所需的存显存容量、通信开销以及引入的额外计算开销各有差异。

    下图展示了根据算法性能需求和所用硬件条件选择最合适的存储技术的流程. 在实际训练过程中,可能会混合采用多种不同的存储技术. 例如,在GPU集群中,通过高带宽的NVLink互联的GPU组使用基于层内并行的分布式显存管理技术;通过带宽较低的PCIe互联的GPU组使用流水线并行的方式。

2.3 面向大模型的存储容错技术

    GPU 故障数量随着 GPU 集群规模的增大而提高. GPU 的频繁故障一方面会导致训练得到的参数丢失;另一方由于大模型训练中各 GPU 间的数据存在依赖关系,单 GPU 的故障会扩散到整个 GPU 集群中. 有 2 类主要的工作解决大模型训练故障的问题:参数检查点和冗余计算. 本节将具体介绍这 2 类不同的大模型训练容错技术。

(1)参数检查点

    参数检查点技术以设定的频率将训练得到的参数信息存储到持久化的存储介质中,以对 GPU 故障进行容错. 在 GPU 故障后,参数检查点技术利用最新且完整的参数进行恢复。

(2)冗余计算

    参数检查点技术需要大容量的持久化存储设备以保存检查点信息. 并且在恢复阶段,参数检查点需要从持久化介质中读取之前版本的参数,这导致恢复开销高. 有工作利用冗余计算的方式,在多张 GPU 中重复计算相同版本的参数,以对模型训练数据容错。
 

2.4  亟需解决的问题

     随着模型规模的急剧增加和硬件设备的发展,大模型训练中仍存在着一些存储问题亟需解决:

     大模型训练的存储成本. 一方面,为充分利用硬件的计算资源,训练需要使用读写带宽更高的存储介质,如HBM. 而这些存储介质的单位比特的价格高昂. 另一方面,随着模型规模的不断攀升,训练所需的存储空间也随之增长,因此需要更大容量的存储介质,这增加了训练过程中用于存储设备的成本.

    大模型训练的绿色存储. 大模型训练能耗大,导致大量碳排放,从而影响全球环境. 从存储角度谈,大模型训练需要使用数量庞大的高带宽存储介质满足大模型训练中的存储需求,这些存储介质相较于读写带宽较低的SSD和HDD能耗高. 并且大模型训练中数据读写频繁,进一步提高了存储能耗。

3 未来

     在智算时代下,大模型带来了巨大的挑战和机会,需要更大的数据量级和存储计算的能力,可以预见在未来几年,存储计算技术会不断提升。比如:

(1)多级存储加速技术;

(2)数据编排加速技术;

(3)存算一体技术;

(4)近数据计算技术;

(5)存内计算技术;

……

4 参考资料

[01] https://baijiahao.baidu.com/s?id=1791661612117319817

[02] 冯杨洋, 汪庆, 谢旻晖, 舒继武. 从BERT到ChatGPT:大模型训练中的存储挑战与技术发展[J]. 计算机研究与发展. DOI: 10.7544/issn1000-1239.202330554 

[03] https://www.bilibili.com/read/cv26765514/

[04]《金融AI存力报告:大模型时代金融行业如何破解先进存力之困?》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/410862.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Pybind11 在C++中运行python脚本操作内存数据

pybind11资料 官方Github:Pybind11 Github Pybind11文档:Pybind11 文档 文档在深入使用后需要细细读懂,包括全局只能有一个解释器,如何从C中返回指针/引用等。基本文档中需要注意的点都会遇到 Python环境安装及维护 对于正常使用人员&…

python自动化测试三部曲之request+django实现接口测试

这里废话少说,进入正题 我的思路是这样的 1、先用django实现登陆、增加、删除、查看4个接口 2、在excel定义好测试案例、然后读取excel中的案例,然后把案例用unittest框架组装和封装 3、启动django,执行测试案例 一、先跑通unittest到dj…

Scikit-Learn逻辑回归

Scikit-Learn逻辑回归 1、逻辑回归概述1.1、逻辑回归1.2、逻辑回归的优缺点1.3、逻辑回归与线性回归 2、逻辑回归的原理2.1、逻辑回归的概念与原理2.2、逻辑回归的损失函数 3、 1、逻辑回归概述 1.1、逻辑回归 逻辑回归(Logistic Regression)主要解决二…

【IDEA】java 项目启动偶现Kotlin 版本问题 error:Kotlin:module was

一、问题描述: error:Kotlin:module was compiled with an incompatible version of kotlin the binary version of its metadata is二、问题原因: jar包版本冲突 三、解决方式: 1、Rebuild Project(推荐☆) 重新构…

【web】云导航项目部署及环境搭建(复杂)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、项目介绍1.1项目环境架构LNMP1.2项目代码说明 二、项目环境搭建2.1 Nginx安装2.2 php安装2.3 nginx配置和php配置2.3.1 修改nginx文件2.3.2 修改vim /etc/p…

内存溢出排查

1、进入k8s容器对应服务节点查看进程号 ps aux|grep javaps aux 是用BSD的格式来显示 java这个进程 显示的项目有:USER , PID , %CPU , %MEM , VSZ , RSS , TTY , STAT , START , TIME , COMMAND USER: 行程拥有者 PID: pid %CPU: 占用的 CPU 使用率 %MEM: 占用的记…

python Airtest自动化测试工具的的使用

Airtest全称AirtestProject,是由网易游戏推出的一款自动化测试框架,在软件测试的时候使用到了该框架。这里记录一下安装、使用和遇到的坑的问题… Airtest的官网介绍项目构成 Airtest:是一个跨平台的、基于图像识别的UI自动化测试框架&#x…

YOLOv9尝鲜测试五分钟极简配置

pip安装python包: pip install yolov9pip在https://github.com/WongKinYiu/yolov9/tree/main中下载好权重文件yolov9-c.pt。 运行下面代码: import yolov9model yolov9.load("yolov9-c.pt", device"cpu") # load pretrained or c…

观察者模式与发布订阅模式

观察者模式 定义: 观察者模式是一种行为型设计模式,定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。 结构图: ES6简易代码实现: //ts环境下…

Uncertainty-Aware Mean Teacher(UA-MT)

Uncertainty-Aware Mean Teacher 0 FQA:1 UA-MT1.1 Introduction:1.2 semi-supervised segmentation1.3 Uncertainty-Aware Mean Teacher Framework 参考: 0 FQA: Q1: 不确定感知是什么意思?不确定信息是啥?Q2:这篇文章的精妙的点…

300分钟吃透分布式缓存-14讲:大数据时代,MC如何应对新的常见问题?

大数据时代 Memcached 经典问题 随着互联网的快速发展和普及,人类进入了大数据时代。在大数据时代,移动设备全面融入了人们的工作和生活,各种数据以前所未有的 速度被生产、挖掘和消费。移动互联网系统也不断演进和发展,存储、计…

掌握“这招”,平趴也能轻松捕获威胁情报!——利用流行度排名升级威胁情报收集

引言 威胁情报是提供强大网络安全服务的重要基石,这些服务可以保护各地的移动设备和互联网用户。但当今的互联网威胁是复杂且具有强适应性的,它们通过不断改变其面貌以逃避安全防御。这使得提供涵盖各种威胁形势的威胁情报变得日益困难,组织…

工具篇-- 定时任务xxl-job

文章目录 前言一、xxl-job 运行:1.1 下载并且启动:1.2 项目介绍:1.2.1 xxl-job-admin:1.2.1.1 xxl-job-admin 作用:1.2.1.2 xxl-job-admin 的配置: 1.2.2 xxl-job-executor-samples:1.2.2.1 pom…

51.仿简道云公式函数实战-文本函数-JOIN

1. JOIN函数 JOIN 函数可通过连接符将数组的值连成文本。 2. 函数用法 JOIN(数组,"连接符") 3. 函数示例 如需将复选框中勾选的选项通过”-“组合在一起,则可设置公式为JOIN(复选框组,"-") 4. 代码实战 首先我们在function包下创建text包…

基于springboot的新闻资讯系统的设计与实现

**🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅**一 、设计说明 1.1 课题背景…

Qt QWidget 简约美观的加载动画 第四季

&#x1f60a; 第四季来啦 &#x1f60a; 效果如下: 只有三个文件,可以直接编译运行的 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QVBoxLayout> #include <QGridLayout> int main(int argc, char *argv[]) …

亚洲唯一!京东荣获2024年度Gartner供应链技术创新奖背后的创新探索

序言&#xff1a; 序言&#xff1a;2月14日晚间&#xff0c;Gartner公布了2024年度Garter Power of the Profession供应链大奖&#xff0c;京东集团荣获供应链技术创新奖&#xff0c;成为获得该奖项的唯一亚洲企业。Gartner Power of the Profession供应链奖项已经举办十年&am…

驻场人员严重划水,愈演愈烈,要请领导出面吗?

你有没有遇到过团队成员偷懒的情况&#xff1f;比如你们一起完成某个项目目标&#xff0c;干着干着你发现&#xff0c;就只有你和几个核心人员比较上心&#xff0c;很多人都在划水。 你可能会觉得这是因为大家工作态度不好&#xff0c;甚至怀疑他们的人品&#xff0c;忍不住想…

MoonBit支持云原生调试功能

MoonBit 更新 1. 支持云原生调试功能 现在&#xff0c;你可以通过访问try.moonbitlang.cn&#xff0c;直接在浏览器中使用 devtools 调试 MoonBit 程序&#xff0c;无需安装任何软件。具体的使用步骤如下&#xff1a; 2. MoonBit 支持使用 for 关键字定义的函数式循环控制流 …

ShardingJDBC分库分表

目录 ShardingSphere ShardingJDBC客户端分库分表 ShardingProxy服务端分库分表 两者对比 ShardingJDBC分库分表实战 需求 步骤 分片策略汇总 ShardingSphere ShardingSphere最为核心的产品有两个&#xff1a;一个是ShardingJDBC&#xff0c;这是一个进行客户端分库分表…
最新文章