【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

👀樊梓慕:个人主页

 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C++》《Linux》《算法》

🌝每一个不曾起舞的日子,都是对生命的辜负


目录

前言

1.关联式容器

2.键值对

3.树形结构的关联式容器

3.1set

3.1.1set的特性 

3.1.2set的构造 

3.1.3set的使用

3.1.4set的使用示例

3.2multiset

3.3map

3.3.1map的特性

3.3.2map的构造

3.3.3map的使用

有关insert 

 有关[]运算符

3.4multimap


前言

本篇文章博主会与大家共同探索STL库中的set与map,其中涉及set与map的使用与一些特性的讲解介绍。


欢迎大家📂收藏📂以便未来做题时可以快速找到思路,巧妙的方法可以事半功倍。 

=========================================================================

GITEE相关代码:🌟樊飞 (fanfei_c) - Gitee.com🌟

=========================================================================


1.关联式容器

前面学习的vector、list、deque等容器统称为『 序列式容器』,插入方式一般为『 push』。

因为他们的底层均为线性序列的结构,且存储的均为元素本身,并没有什么特殊含义。

而今天所学习的map、set、multimap、multiset等都为『 关联式容器』,插入方式一般为『 insert』。

他们的区别在与『 关联式容器』里面存储的是<Key,Value>结构的『 键值对』,在数据检索时比序列式容器效率更高。


2.键值对

『 键值对』用来表示具有『 一一对应』关系的一种结构,该结构中一般只包含两个成员变量Key和Value,key代表键值,value代表与键值key对应的信息。

我们来观察下SGI-STL中关于『 键值对』的定义:

template <class T1, class T2>
struct pair
{
	typedef T1 first_type;
	typedef T2 second_type;
	T1 first;
	T2 second;
	pair() : first(T1()), second(T2())
	{}
	pair(const T1& a, const T2& b) : first(a), second(b)
	{}
};

很容易的我们看到在STL中『 键值对』就是pair这种结构。

pair的first代表的就是key,second代表的就是value。 

注:我们可以采用make_pair()来构建『 键值对』。

那在实际的应用中我们有不同的方法来构建pair,这个我们后面在谈,这里先简单介绍一下。


3.树形结构的关联式容器

在STL中有两种不同结构的关联式容器。

关联式容器容器结构底层实现特点
set、map、multiset、multimap树型平衡搜索树(红黑树)有序
unordered_set、unordered_map、unordered_multiset、unordered_multimap哈希哈希表无序

 这里我们只谈树形结构。

可以看到树形结构的关联式容器都采用『 平衡搜索树(红黑树)』作为底层实现方式。

其中multiset和multimap允许键值冗余,即允许不同value对应的key值重复。

3.1set

3.1.1set的特性 

  • set是按照一定次序存储元素的容器,使用set的迭代器遍历set中的元素,可以得到有序序列。
  • 在set中,元素的value也标识它(value就是key,类型为T),所以set中插入元素时,只需要插入value即可,不需要构造键值对,并且每个value必须是唯一的,所以set中的元素不可以重复(因此可以使用set进行去重)。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
  • 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序,当不传入内部比较对象时,set中的元素默认按照小于来比较。
  • set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
  • set在底层是用二叉搜索树(红黑树)实现的,所以查找的时间复杂度为logN。

注意:与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对。


3.1.2set的构造 

(1)构造

set<int> s1; 

(2) 拷贝构造。

set<int> s2(s1); 

(3)迭代器区间构造。

set<char> s3(s2.begin(), s2.end()); 

(4) 采用大于的排序准则进行排序,默认为less小于即升序。

set<int, greater<int>> s4; 

3.1.3set的使用

pair<iterator,bool> insert (const value_type& x )在set中插入元素x,实际插入的是<x, x>构成的键值对,如果插入成功,返回<该元素在set中的位置,true>,如果插入失败,说明x在set中已经存在,返回<x在set中的位置,false>
void erase ( iterator position )删除set中position位置上的元素
size_type erase ( const key_type& x )删除set中值为x的元素,返回删除的元素的个数
void erase ( iterator first, iterator last )删除set中[first, last)区间中的元素
void swap ( set<Key,Compare, Allocator>& st );交换set中的元素
void clear ( )将set中的元素清空
iterator find ( const key_type& x ) const返回set中值为x的元素的位置
size_type count ( const key_type& x ) const返回set中值为x的元素的个数
bool empty ( ) const检测set是否为空,空返回true,否则返回true
size_type size() const返回set中有效元素的个数
迭代器等...

3.1.4set的使用示例

#include <set>
void TestSet()
{
	// 用数组array中的元素构造set
	int array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4,
	6, 8, 0 };
	// 迭代器区间构造
	set<int> s(array, array + sizeof(array) / sizeof(array));
	cout << s.size() << endl;
	// 正向打印set中的元素,从打印结果中可以看出:set可去重
	for (auto& e : s)
		cout << e << " ";
	cout << endl;
	// 使用迭代器逆向打印set中的元素
	for (auto it = s.rbegin(); it != s.rend(); ++it)
		cout << *it << " ";
	cout << endl;
	// set中值为3的元素出现了几次
	cout << s.count(3) << endl;
}

3.2multiset

multiset容器和set容器所提供的成员函数的接口基本都是一致的,multiset容器和set容器的唯一区别就是,multiset允许『 键值冗余』,即multiset容器存储的元素是可以重复的。

比如:

#include <set>
void TestSet()
{
	int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };
	// 注意:multiset在底层实际存储的是<int, int>的键值对
    // 迭代器区间构造
	multiset<int> s(array, array + sizeof(array) / sizeof(array[0]));
	for (auto& e : s)
		cout << e << " ";
	cout << endl;
	return 0;
}

由于multiset允许『 键值冗余』,所以成员函数find和count的返回值有所不同。

  • find函数:返回底层搜索树中序的第一个值为val的元素的迭代器
  • count函数:返回值为val的元素个数

3.3map


3.3.1map的特性

  • map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素。
  • 在map中,键值key通常用于排序和唯一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair: typedef pair<const key, T> value_type;
  • map容器中元素的键值key不能被修改,但是元素的值value可以被修改,因为map底层的二叉搜索树是根据每个元素的键值key进行构建的,而不是值value。

  • 在内部,map中的元素总是按照键值key进行比较排序的,默认小于。
  • map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。
  • map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。
  • map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。

3.3.2map的构造

 (1)构造

map<int, double> m1;

(2) 拷贝构造。

map<int, double> m2(m1);

(3)迭代器区间构造。

map<int, double> m3(m2.begin(), m2.end());

(4) 采用大于的排序准则进行排序,默认为less小于即升序。

map<int, double, greater<int>> m4;

3.3.3map的使用

pair<iterator,bool> insert (const value_type& x )在map中插入键值对x,注意x是一个键值
对,返回值也是键值对:iterator代表新插入
元素的位置,bool代表释放插入成功
void erase ( iterator position )删除position位置上的元素
size_type erase ( const key_type& x )删除键值为x的元素
void erase ( iterator first, iterator last )删除[first, last)区间中的元素
void swap (map<Key,T,Compare,Allocator>& mp)交换两个map中的元素
void clear ( )将map中的元素清空
iterator find ( const key_type& x)在map中插入key为x的元素,找到返回该元
素的位置的迭代器,否则返回end
const_iterator find ( const key_type& x ) const在map中插入key为x的元素,找到返回该元
素的位置的const迭代器,否则返回cend
size_type count ( const key_type& x ) const返回key为x的键值在map中的个数,注意
map中key是唯一的,因此该函数的返回值
要么为0,要么为1,因此也可以用该函数来
检测一个key是否在map中
bool empty ( ) const检测map中的元素是否为空,是返回true,否则返回false
size_type size() const返回map中有效元素的个数
mapped_type& operator[] (const key_type& k)返回k对应的value,且可对value进行修改
迭代器等...

有关insert 

我们知道,map的value_type是pair,所以在插入时我们需要构造出一个pair来,所以这里有三种方式构造pair:匿名对象、make_pair和C++11的{}构造。

(1)匿名对象

int main()
{
	map<int, string> m;
	//方式一:构造匿名对象
	m.insert(pair<int, string>(1, "one"));
	return 0;
}

(2)make_pair

库给我们提供了一个构造pair的函数:

template <class T1, class T2>
pair<T1, T2> make_pair(T1 x, T2 y)
{
	return (pair<T1, T2>(x, y));
}

所以:

int main()
{
	map<int, string> m;
	//方式一:构造匿名对象
	m.insert(pair<int, string>(1, "one"));
	//方式二:make_pair
	m.insert(make_pair(2, "two"));
	return 0;
}

(3)C++11 {}构造

C++11引入了『 多参数隐式类型转换』,所以我们可以利用{}进行构造:

int main()
{
	map<int, string> m;
	//方式一:构造匿名对象
	m.insert(pair<int, string>(1, "one"));
	//方式二:make_pair
	m.insert(make_pair(2, "two"));
	//方式三:{}构造
	m.insert( { 3, "three" } );
	return 0;
}

推荐第二或第三种。

insert函数的『 返回值』也是一个pair对象,该pair对象中第一个成员的类型是map的迭代器类型,第二个成员的类型的一个bool类型,具体含义如下:

  • 若待插入元素的键值key在map当中不存在,则insert函数插入成功,并返回插入后元素的迭代器和true。
  • 若待插入元素的键值key在map当中已经存在,则insert函数插入失败,并返回map当中键值为key的元素的迭代器和false。

 有关[]运算符

我们直接看STL库中的说法: 

意思是调用[]操作符相当于进行下面的操作:

(*((this->insert(make_pair(k,mapped_type()))).first)).second

 我们从内向外进行分析:

首先调用了insert函数,插入的是键值k和mapped_type默认值组成的键值对,而insert的返回值是键值对pair<iterator,bool>,.first取到这个迭代器,解引用拿到该迭代器指向的map中的元素,.second取到value值。

简单模拟重载下[]:

V& operator[](const K& key)
{
    pair<iterator,bool> ret = insert(make_pair(key,V()));
    return ret.first->second;
}

重点是什么呢,就是一旦你调用这个[]操作符,那么就被插入了,所以我们可以利用[]完成插入操作。

所以对于map来说,[]操作符可以实现很多功能:


3.4multimap

multimap容器和map容器所提供的成员函数的接口基本都是一致的,multimap容器和map容器的唯一区别就是,multimap允许『 键值冗余』,即multimap容器存储的元素是可以重复的。

注意:multimap由于『 键值冗余』,如果不同的value对应的key值相同的情况下,返回value会产生歧义,所以未重载[]操作符。

由于multimap允许『 键值冗余』,所以成员函数find和count的返回值有所不同。

  • find函数:返回底层搜索树中序的第一个值为key的元素的迭代器
  • count函数:返回值为key的元素个数

=========================================================================

如果你对该系列文章有兴趣的话,欢迎持续关注博主动态,博主会持续输出优质内容

🍎博主很需要大家的支持,你的支持是我创作的不竭动力🍎

🌟~ 点赞收藏+关注 ~🌟

=========================================================================

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/414727.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux笔记--用户与用户组

Linux系统是一个多用户多任务的操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员(root)申请一个账号&#xff0c;然后以这个账号的身份进入系统。 用户的账号一方面可以帮助系统管理员对使用系统的用户进行跟踪&#xff0c;并控制他们对系…

python接口自动化测试 —— unittest框架suite、runner详细使用!

test suite 测试套件&#xff0c;理解成测试用例集一系列的测试用例&#xff0c;或测试套件&#xff0c;理解成测试用例的集合和测试套件的集合当运行测试套件时&#xff0c;则运行里面添加的所有测试用例 test runner 测试运行器用于执行和输出结果的组件 test suite、tes…

【前端素材】推荐优质后台管理系统Salreo平台模板(附源码)

一、需求分析 当我们从多个层次来详细分析后台管理系统时&#xff0c;可以将其功能和定义进一步细分&#xff0c;以便更好地理解其在不同方面的作用和实际运作。 1. 结构层次 在结构层次上&#xff0c;后台管理系统可以分为以下几个部分&#xff1a; a. 辅助功能模块&#…

PostgreSQL:开源巨人的崛起和不可阻挡的发展

PostgreSQL&#xff1a;开源巨人的崛起和不可阻挡的发展 PostgreSQL是一款开源的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;以其强大的功能和持续的发展势头在数据库领域崭露头角。本文将探讨为什么PostgreSQL的发展势不可挡&#xff0c;从开源精神和强大…

GridView 演示(P28 5.4GridView)

一、目标效果 如下图所示&#xff0c;我们通过 GridView 新建100个子项&#xff0c;每个子项上写有自己的 index。 二、具体实现代码 1. Main.qml import QtQuickWindow {width: 640height: 480visible: truetitle: qsTr("GridView 演示")GridView{anchors.fill…

探索NebulaGraph:一个开源分布式图数据库的技术解析

欢迎关注微信公众号&#xff1a;一休哥助手。多种功能等待你的使用。1. 介绍 NebulaGraph的定位和用途 NebulaGraph是一款开源的分布式图数据库&#xff0c;专注于存储和处理大规模图数据。它的主要定位是为了解决图数据存储和分析的问题&#xff0c;能够处理节点和边数量巨大…

林浩然与杨凌芸的Scala编程历险记:变量与数据类型的魔法对决

林浩然与杨凌芸的Scala编程历险记&#xff1a;变量与数据类型的魔法对决 在Scala世界的梦幻殿堂中&#xff0c;两位英勇的程序员——林浩然和杨凌芸正准备开启一场代码之旅。这次&#xff0c;他们将深入探索Scala王国中的变量奥秘与数据类型丛林。 一、变量声明篇 &#xff0…

【DDD】学习笔记-领域驱动设计体系

从统一语言到限界上下文&#xff0c;从限界上下文到上下文映射&#xff0c;从领域分析建模到领域设计建模&#xff0c;再从领域设计建模到领域实现建模&#xff0c;我将软件架构设计、面向对象设计、场景驱动设计和测试驱动开发有机地融合起来&#xff0c;贯穿于领域驱动设计的…

数据结构:循环队列

一、队列的概念 操作受限的线性表&#xff0c;允许在队列的一端执行入队操作&#xff0c;另一端执行出队操作 先进先出(FIFO) 1.顺序队列 物理结构连续&#xff0c;依赖于数组实现 队列中有一个队头指针和队尾指针&#xff0c;队头指针保存每次要出队的元素&#xff0c;队…

使用Jenkins部署前端Vue项目和后端Java服务

Jenkins安装相关插件&#xff0c;供后续使用&#xff08;Dashboard - Manage Jenkins - Plugins&#xff09; Maven Integration plugin https://plugins.jenkins.io/maven-plugin CloudBees Docker Build and Publish pluginhttps://plugins.jenkins.io/docker-build-publish…

代码随想录算法训练营第64天/最后一天 | 84.柱状图中最大的矩形

今日任务 84.柱状图中最大的矩形 84.柱状图中最大的矩形 - Hard 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾…

Opencv实战(3)详解霍夫变换

霍夫变换 Opencv实战系列指路前文&#xff1a; Opencv(1)读取与图像操作 Opencv(2)绘图与图像操作 文章目录 霍夫变换1.霍夫线变换1.1 原理1.2 HoughLines() 2.霍夫圆变换2.1 原理2.2 HoughCircles() 最基本的霍夫变换是从黑白图像中检测直线(线段) 霍夫变换(Hough Transform…

第三百七十回

文章目录 1. 概念介绍2. 使用方法2.1 获取所有时区2.2 转换时区时间 3. 示例代码4. 内容总结 我们在上一章回中介绍了"分享一些好的Flutter站点"相关的内容&#xff0c;本章回中将介绍timezone包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在…

Unity中URP下实现水体(水面反射)

文章目录 前言一、原理1、法一&#xff1a;使用立方体纹理 CubeMap&#xff0c;作为反射纹理使用2、法二&#xff1a;使用反射探针生成环境反射图&#xff0c;所谓反射的采样纹理 二、实现水面反射1、定义和申明CubeMap2、反射向量需要什么3、计算 N ⃗ \vec{N} N 4、计算 V ⃗…

linux服务器调度数据库的存储过程

1、需要安装数据库的客户端 2、安装sqlplus 3、编写sh脚本 脚本内容如下&#xff1a; 4、设置调度任务

React UI框架Antd 以及 如何按需引入css样式配置(以及过程中各种错误处理方案)

一、react UI框架Antd使用 1.下载模块 npm install antd -S 2.引入antd的样式 import ../node_modules/antd/dist/reset.css; 3.局部使用antd组件 import {Button, Calendar} from antd; import {PieChartTwoTone} from ant-design/icons; {/* 组件汉化配置 */} import l…

[机器视觉]halcon应用实例 边缘检测2

一个学习找边的实例2&#xff0c;用于练习相关算子&#xff0c;这个版本比较简单&#xff0c;少了一些对图像的处理。所以主要是用于练习思路和相关算子。只有用了&#xff0c;练了你在脑子里心才有收获。 边缘检测的步骤图解 代码 *直线找边 *清空屏幕&#xff0c;显式控制图…

express+mysql+vue,从零搭建一个商城管理系统5--用户注册

提示&#xff1a;学习express&#xff0c;搭建管理系统 文章目录 前言一、新建user表二、安装bcryptjs、MD5、body-parser三、修改config/db.js四、新建config/bcrypt.js五、新建models文件夹和models/user.js五、index.js引入使用body-parser六、修改routes/user.js七、启动项…

Linux------进程地址空间

目录 一、进程地址空间 二、地址空间本质 三、什么是区域划分 四、为什么要有地址空间 1.让进程以统一的视角看到内存 2.进程访问内存的安全检查 3.将进程管理与内存管理进行解耦 一、进程地址空间 在我们学习C/C的时候&#xff0c;一定经常听到数据存放在堆区、栈区、…

Linux shell:补充命令的使用

目录 一.导读 二.正文 三.结语 一.导读 上一篇介绍了脚本的简单概念以及使用&#xff0c;现在补充一些命令。 二.正文 目前处于全局目录&#xff0c;通过mkdir创建名我为day01的文件。 通过cd命令day01 切换至day01文件当中。 使用vim文本编辑器文件名&#xff08;firstdir&…
最新文章