回溯 Leetcode 37 解数独

解数独

Leetcode 37

学习记录自代码随想录

编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
在这里插入图片描述

要点:1.树层为1-9遍历,深度为board中从一开始的空格到最后一个空格;
2.递归时不需要先找出所有空格在利用一个循环递归深度,应该用两个循环(横纵坐标)定位来进行深度递归;
3.相比较之前的组合,排列问题回溯模板,需要在树层for循环外套两个for循环来辅助进行深度递归;
4.递归函数返回值为bool,因为题目只有一个解,所以只要找到一个解就立即返回;
5.对一个空格进行1-9的树层遍历,若没有满足条件的数字,则直接返回false(所以不需要最开始的终止条件);

class Solution {
private:
    // board中元素为字符,输入参数应为char而不是int,数字字符不要想当然为int
    bool check(vector<vector<char>>& board, int row, int col, char target){
        // 检查行
        for(int j = 0; j < 9; j++){
            if(board[row][j] != '.' && board[row][j] == target){
                return false;
            }
        }

        //检查列
        for(int i = 0; i < 9; i++){
            if(board[i][col] != '.' && board[i][col] == target){
                return false;
            }
        }

        //检查九宫格
        int m = row / 3, n = col / 3;
        //下面注释的这种写法同加同减是对绞线检查不是遍历九宫格,不要相当然大意
        // for(int i = 3*m, j = 3*n; i < 3*m+3 && j < 3*n+3; i++, j++){
        //     if(board[i][j] != '.' && board[i][j] == target){
        //         return false;
        //     }
        // }
        //应为
        for(int i = 3*m; i < 3*m + 3; i++){
            for(int j = 3*n; j < 3*n + 3; j++){
                if(board[i][j] != '.' && board[i][j] == target){
                    return false;
                }
            }
        }
        return true;
    }

    // 返回为逻辑真假
    bool backtracking(vector<vector<char>>& board){
        // 不需要终止条件,原因见下方

        for(int i = 0; i < 9; i++){
            for(int j = 0; j < 9; j++){
                if(board[i][j] == '.'){
                    for(char k = '1'; k <= '9'; k++){
                        if(check(board, i, j, k)){
                            board[i][j] = k;
                            if(backtracking(board)) return true;
                            board[i][j] = '.';  // 回溯 
                        }
                    }
                    // 如果9个数都不行返回假
                    // 因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!
                    // 那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!
                    return false;
                }
            }
        }
        return true;
    }
public:
    void solveSudoku(vector<vector<char>>& board) {

        backtracking(board);
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/418370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何解决机器视觉高速图像处理软件的加密需求?

高速图像处理在机器视觉中的应用重要性 在机器视觉行业中&#xff0c;高速图像处理软件的作用至关重要&#xff0c;它使得机器能够迅速分析和处理成千上万的图像数据。这种能力在制造业、安防系统、交通监控等多个领域发挥着核心作用&#xff0c;如在制造业中&#xff0c;高速…

获取PDF中的布局信息——如何获取段落

PDF解析是极其复杂的问题。不可能靠一个工具解决全部问题&#xff0c;尤其是五花八门&#xff0c;格式不统一的PDF文件。除非有钞能力。如果没有那就看看可以分为哪些问题。 提取文本内容&#xff0c;提取表格内容&#xff0c;提取图片。我认为这些应该是分开做的事情。python有…

基于大模型思维链(Chain-of-Thought)技术的定制化思维链提示和定向刺激提示的心理咨询场景定向ai智能应用

本篇为个人笔记 记录基于大模型思维链&#xff08;Chain-of-Thought&#xff09;技术的定制化思维链提示和定向刺激提示的心理咨询场景定向ai智能应用 人工智能为个人兴趣领域 业余研究 如有错漏欢迎指出&#xff01;&#xff01;&#xff01; 目录 本篇为个人笔记 记录基…

跨时钟信号处理方法

1. 背景 现在的芯片&#xff08;比如SOC&#xff0c;片上系统&#xff09;集成度和复杂度越来越高&#xff0c;通常一颗芯片上会有许多不同的信号工作在不同的时钟频率下。比如SOC芯片中的CPU通常会工作在一个频率上&#xff0c;总线信号&#xff08;比如DRAM BUS&#xff09;会…

MCBPS配置成SPI

MCBPS配置成SPI 典型的SPI接口 McBSP作为SPI主机 以McBSP为主的SPI接口如图所示。当McBSP被配置为主控器时,发送输出信号(DX)被用作SPI协议的SPISIMO信号,并且接收输入信号(DR)被用作SPISOMI信号。 表列出了将McBSP配置为主控器所需的寄存器位值。下表是有关配置要求…

性能测试-反编译jar

方法一&#xff0c;使用jd-gui 1、官网下载&#xff1a;Java Decompiler 2、下载mac版本后&#xff0c;解压&#xff0c;如下所示&#xff1a; 双击 JD_GUI&#xff0c;提示错误&#xff0c;如下所示&#xff1a; 已经安装了java 17&#xff0c;是java 1.8以上版本&#xff0…

sheng的学习笔记-卷积神经网络经典架构-LeNet-5、AlexNet、VGGNet-16

目录&#xff1a;目录 看本文章之前&#xff0c;需要学习卷积神经网络基础&#xff0c;可参考 sheng的学习笔记-卷积神经网络-CSDN博客 目录 LeNet-5 架构图 层级解析 1、输入层&#xff08;Input layer&#xff09; 2、卷积层C1&#xff08;Convolutional layer C1&…

Day06:基础入门-抓包技术HTTPS协议APP小程序PC应用WEB转发联动

目录 HTTP/HTTPS协议抓包工具 Web浏览器抓包 APP应用抓包 WX小程序&PC应用抓包 思维导图 章节知识点&#xff1a; 应用架构&#xff1a;Web/APP/云应用/三方服务/负载均衡等 安全产品&#xff1a;CDN/WAF/IDS/IPS/蜜罐/防火墙/杀毒等 渗透命令&#xff1a;文件上传下载…

FineBI与DeepBI针对用9行数据分析一篇完整的数据报告的速度对比

#数据分析报告# 在我们的理想化构想中&#xff0c;数据分析师如同诸葛亮一般&#xff0c;运筹帷幄之中&#xff0c;决策千里之外。他们似乎拥有无尽的资源&#xff0c;可以随心所欲地运用各种方法和模型。在这样的前提下&#xff0c;数据分析师理应能轻松驾驭复杂的数据&#…

备战蓝桥杯---树形DP基础3

上一次我们讲了二叉苹果树&#xff0c;现在我们加一点难度&#xff0c;从二叉变成了多叉苹果树。 这样子我们就不可以直接按照上次的方法DP&#xff0c;我们其实可以发现&#xff0c;我们可以用类似背包的思想求解&#xff0c;这就是所谓的树上背包。 我们先加进第一个儿子来…

靶机渗透之sar

Name: Sar: 1Date release: 15 Feb 2020Author: LoveSeries: Sar Download: https://drive.google.com/open?id1AFAmM21AwiAEiVFUA0cSr_GeAYaxd3lQ 对于vulnhub中的靶机&#xff0c;我们都需先下载镜像&#xff0c;然后导入VM&#xff0c;并将网络连接改为NAT模式。首先我们…

包管理工具之npm也慌了?

起因 因为npm的种种问题,我很早就换成了pnpm和yarn(但是其实npm也在使用),已经很久没有关注npm的功能更新了。最近无意间进入Node18版本的安装目录,发现其除了常规的node,npm等默认安装了一个新的包corepack,这个就是今天我要分享的东西了。 注: 我因为18版本的node上…

自动化构建平台(一)Linux下搭建私有代码仓库Gitblit的安装和使用详解

文章目录 前言一、Gitblit的安装和使用1、本地安装2、docker下安装3、Gitblit使用简介4、Gitblit仓库权限控制5、Gitblit邮件配置 总结 前言 代码版本管理&#xff0c;git模式应该是目前最流行的代码管理软件。目前支持git的管理软件有很多。 Gitblit是一个小型的代码仓库管理…

最简单的基于 FFmpeg 的推流器(以推送 RTMP 为例)

最简单的基于 FFmpeg 的推流器&#xff08;以推送 RTMP 为例&#xff09; 最简单的基于 FFmpeg 的推流器&#xff08;以推送 RTMP 为例&#xff09;简介需要注意的地方封装格式延时PTS/DTS问题 程序流程图源程序结果工程文件下载参考链接 最简单的基于 FFmpeg 的推流器&#xf…

HTML5:七天学会基础动画网页4

backgorund-size 值与说明 length(单位像素):设置背景图片高度和宽度&#xff0c;第一个值设置宽度&#xff0c;第二个值设置高度&#xff0c;如果只给出一个值&#xff0c;第二个是设置为auto。 percentage(百分比):以父元素的百分比来设置背景图像的宽度和高度&#xff0c…

ChatGPT4.0 的优势、升级 4.0 为什么这么难以及如何进行升级?

前言 “ChatGPT4.0一个月多少人民币&#xff1f;” ”chatgpt4账号“ ”chatgpt4 价格“ “chatgpt4多少钱” 最近发现很多小伙伴很想知道关于ChatGPT4.0的事情&#xff0c;于是写了这篇帖子&#xff0c;帮大家分析一下。 一、ChatGPT4.0 的优势 &#xff08;PS&#xff1a;…

SpringBoot接收参数的几种形式

SpringBoot接收参数的几种形式 在SpringBoot中获取参数基本方式有5种,需要都掌握. 这里需要记住一个技术术语或概念 API接口: 你写好的那个URL地址,就被称为API接口 1. 接收常规参数 给/param/demo1这个URL接口发送id, name两个参数 以上是以GET请求类型进行发送,实际发送…

深度学习500问——Chapter02:机器学习基础(1)

文章目录 前言 2.1 基本概念 2.1.1 大话理解机器学习本质 2.1.2 什么是神经网络 2.1.3 各种常见算法图示 2.1.4 计算图的导数计算 2.1.5 理解局部最优与全局最优 2.1.5 大数据与深度学习之间的关系 2.2 机器学习学习方式 2.2.1 监督学习 2.2.2 非监督式学习 2.2.3 …

【iOS ARKit】协作 Session 实例

协作 Session 使用注意事项 协作 Session 是在 ARWorldMap 基础上发展起来的技术&#xff0c;ARWorldMap 包含了一系列的地标、ARAnchor 及在观察这些地标和 ARAnchor 时摄像机的视场&#xff08;View&#xff09;。如果用户在某一个位置新创建了一个 ARAnchor&#xff0c;这时…

指针的传递使用场景

C语言函数调用时为值传递&#xff0c;实参赋值给形参&#xff0c;形参值改变不会影响实参&#xff08;原理&#xff1a;两个参数地址不同&#xff09;&#xff0c;若要函数改变实参值&#xff0c;应当传递实参的地址&#xff0c;参考以下实例。 代码展示&#xff1a; #includ…
最新文章