探索Redis 6.0的新特性

55fcd04c2a094ab8b405233acf0af7e5.png

Redis(Remote Dictionary Server)是一个开源的内存中数据结构存储系统,通常被用作缓存、消息队列和实时数据处理等场景。它的简单性、高性能以及丰富的数据结构支持使其成为了众多开发者和企业的首选。在Redis 6.0版本中,引入了一系列令人期待的新特性和改进,本文将深入探讨这些新特性,以便开发者更好地理解和利用Redis在其项目中的潜力。

1.新特性

  • 深度嵌套的从复制:在Redis 6.0中,引入了深度嵌套的从复制,使得从节点可以成为其他主节点的从节点,从而构建多级的从节点拓扑结构。这一特性提高了系统的可扩展性和灵活性,使得数据在分布式环境中更加可靠。
  • 线程模型改进:Redis 6.0对线程模型进行了改进,引入了新的I/O线程,使得Redis能够更好地利用多核处理器的性能。这一改进提高了Redis在高负载环境下的性能表现,并降低了对单个CPU核心的依赖。
  • 新的RDB版本:Redis 6.0引入了新的RDB版本(RDB版本 9),在处理大型数据库时具有更好的性能和可靠性。这一改进使得Redis在备份和恢复大规模数据时更加高效,降低了与持久化相关的性能开销。
  • 慢查询日志改进:Redis 6.0对慢查询日志进行了改进,引入了新的命令SLOWLOG GET,使得开发者能够更加灵活地检索和分析慢查询日志。这一改进有助于开发者更好地识别和优化性能瓶颈,提高系统的响应速度。
  • TLS支持: Redis 6.0新增了对TLS(Transport Layer Security)的支持,通过加密保护数据在传输过程中的安全性。这一改进使得Redis在安全性方面更加强大,并能够满足更严格的安全要求。

2. 多线程模型

1. redis 6.0 提供了多线程的支持,redis 6 以前的版本,严格来说也是多线程,只不过执行用户命令的请求时单线程模型,还有一些线程用来执行后台任务, 比如 unlink 删除 大key,rdb持久化等。

redis 6.0 提供了多线程的读写IO, 但是最终执行用户命令的线程依然是单线程的,这样,就没有多线程数据的竞争关系,依然很高效。

redis 6.0 以前线程执行模式,如下操作在一个线程中执行完成

 

078c47c35fbdffe1824ebbf561a60083.png

redis 6.0 线程执行模式:

可以通过如下参数配置多线程模型:

如:

io-threads 4 // 这里说 有三个IO 线程,还有一个线程是main线程,main线程负责IO读写和命令执行操作

默认情况下,如上配置,有三个IO线程, 这三个IO线程只会执行 IO中的write 操作,也就是说,read 和 命令执行 都由main线程执行。最后多线程将数据写回到客户端。

 

6992dcf3b244196428fda25fb27f48ed.png

开启了如下参数:

io-threads-do-reads yes // 将支持IO线程执行 读写任务。

 

a379521edab2864b0e1a7082613860df.png

3. client side caching

客户端缓存:redis 6 提供了服务端追踪key的变化,客户端缓存数据的特性,这需要客户端实现

 

8544d5fc5b42fa1905407188b13c3b32.png

执行流程为, 当客户端访问某个key时,服务端将记录key 和 client ,客户端拿到数据后,进行客户端缓存,这时,当key再次被访问时,key将被直接返回,避免了与redis 服务器的再次交互,节省服务端资源,当数据被其他请求修改时,服务端将主动通知客户端失效的key,客户端进行本地失效,下次请求时,重新获取最新数据。

目前只有lettuce对其进行了支持:

<dependency>
   <groupId>io.lettuce</groupId>
   <artifactId>lettuce-core</artifactId>
   <version>6.0.0.RELEASE</version>
</dependency>
public static void main(String[] args) throws InterruptedException {
    RedisClient redisClient = RedisClient.create("redis://192.168.109.200");

    Map<String, String> clientCache = new ConcurrentHashMap<>();

    StatefulRedisConnection<String, String> myself = redisClient.connect();

    CacheFrontend<String, String> frontend =
            ClientSideCaching.enable(CacheAccessor.forMap(clientCache),
            myself,
            TrackingArgs.Builder.enabled().noloop());

    String key="csk";
    int count = 0;
    while (true){

        System.out.println(frontend.get(key));
        TimeUnit.SECONDS.sleep(3);
        if (count++ == Integer.MAX_VALUE){
            myself.close();
            redisClient.shutdown();
        }
    }
}

4.Acls访问权限控制

ACL 是对于命令的访问和执行权限的控制,默认情况下,可以有执行任意的指令,兼容以前版本

ACL设置有两种方式:

1. 命令方式

ACL SETUSER + 具体的权限规则, 通过 ACL SAVE 进行持久化

2. 对 ACL 配置文件进行编写,并且执行 ACL LOAD 进行加载

ACL存储有两种方式,但是两种方式不能同时配置,否则直接报错退出进程

1.redis 配置文件: redis.conf

2.ACL配置文件, 在redis.conf 中通过 aclfile /path 配置acl文件的路径

命令方式:

ACL SETUSER alice   // 创建一个 用户名为 alice的用户

用如上的命令创建的用户语义为:

  1. 处于 off 状态, 它是被禁用的,不能用auth进行认证
  2. 不能访问任何命令
  3. 不能访问任意的key
  4. 没有密码

如上用户alice 没有任何意义。

创建一个对 cached: 前缀具有get命令执行权限的用户,并且设置密码:

acl setuser alice on >pass123  ~cached:* +get 
auth alice pass123
set a a
(error) NOPERM this user has no permissions to run the 'set' command or its subcommand
get a a 
(error) NOPERM this user has no permissions to access one of the keys used as arguments
get cached:name
vvv

如上,如果访问没有被授权的命令,或者key, 将报错,set 命令没有被授权, key a 没有被授权,

cached:name 可以通过验证。

更符合阅读习惯的格式

ACL GETUSER alice

添加多个访问模式,空格分隔, 注意,切换其他用户进行登录,alice没有admin权限

ACL SETUSER alice ~objects:* ~items:* ~public:*

针对类型命令的约束

ACL SETUSER alice on +@all -@dangerous >密码 ~*

这里+@all: 包含所有得命令 然后用-@ 去除在redis command table 中定义的 dangerous 命令

 

104ae27177a464fbab934a82315a0c88.png

可以通过如下命令进行查看具体有哪些命令属于某个类别

acl cat // 查看所有类别
acl cat dangerous // 查看所有的 dangerous 命令

开放子命令

ACL SETUSER myuser -client +client|setname +client|getname

禁用client 命令,但是开放 client 命令中的子命令 setname 和 getname ,只能是先禁用,后追加子命令,因为后续可能会有新的命令增加。

5. 总结

以下是使用表格对比Redis 6.0与旧版本的主要特性和改进:

特性/改进Redis 6.0旧版本
深度嵌套的从复制支持深度嵌套的从复制,构建多级从节点拓扑结构仅支持单级从节点拓扑结构
线程模型改进引入新的I/O线程,更好地利用多核处理器性能线程模型相对简单,性能受限
新的RDB版本引入RDB版本 9,处理大型数据库性能更优旧版本存在性能瓶颈,处理大规模数据效率低
慢查询日志改进引入新的命令SLOWLOG GET,更灵活地检索和分析慢查询日志慢查询日志功能相对简单,缺乏灵活性
TLS支持新增对TLS的支持,保护数据在传输过程中的安全性缺乏对传输层安全性的支持

 


更多文章

Redis为何如此快速?-CSDN博客

Redis持久化、主从与哨兵架构详解-CSDN博客

Redis集群选举流程详解-CSDN博客

ZAB 协议解析:ZooKeeper分布式一致性的核心-CSDN博客

MySQL8:开启数据库管理的新时代-CSDN博客

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/421327.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu22.04 成功编译llvm和clang 3.4.0,及 bitcode 函数名示例,备忘

1, 获取llvm 仓库 从github上获取&#xff1a; $ git clone --recursive https://github.com/llvm/llvm-project.git 2, 检出 llvmorg-3.4.0 tag 针对llvm 3.4.0版本&#xff0c;检出 $ cd llvm-project $ git tag $ git checkout llvmorg-3.4.0 3, 配置并编译llvm 使用 M…

矩阵爆破逆向之条件断点的妙用

不知道你是否使用过IDA的条件断点呢&#xff1f;在IDA进阶使用中&#xff0c;它的很多功能都有大作用&#xff0c;比如&#xff1a;ida-trace来跟踪调用流程。同时IDA的断点功能也十分强大&#xff0c;配合IDA-python的输出语句能够大杀特杀&#xff01; 那么本文就介绍一下这…

Siemens-NXUG二次开发-获取prt中体与类型、实体面与类型、实体边与类型、边上点的Tag标识[Python UF][20240302]

Siemens-NXUG二次开发-获取prt中体与类型、实体面与类型、实体边与类型、边上点的Tag标识[Python UF][20240302] 1.python uf函数1.1 NXOpen.UF.Obj.CycleObjsInPart1.2 NXOpen.UF.Obj.AskTypeAndSubtype1.3 NXOpen.UF.Modeling.AskBodyFaces1.4 NXOpen.UF.Modeling.AskFaceEdg…

韦东山嵌入式Liunx入门驱动开发四

文章目录 一、异常与中断的概念及处理流程1-1 中断的引入1-2 栈(1) CPU实现a ab的过程(2) 进程与线程 1-3 Linux系统对中断处理的演进1-4 Linux 中断系统中的重要数据结构(1) irq_desc 结构体(2) irqaction 结构体(3) irq_data 结构体(4) irq_domain 结构体(5) irq_domain 结构…

mac苹果电脑c盘满了如何清理内存?2024最新操作教程分享

苹果电脑用户经常会遇到麻烦:内置存储器(即C盘)空间不断缩小&#xff0c;电脑运行缓慢。在这种情况下&#xff0c;苹果电脑c盘满了怎么清理&#xff1f;如何有效清理和优化存储空间&#xff0c;提高计算机性能&#xff1f;成了一个重要的问题。今天&#xff0c;我想给大家详细介…

Unity 切换场景

场景切换前必须要将场景拖动到Build中 同步加载场景 using System.Collections; using System.Collections.Generic; //using UnityEditor.SearchService; using UnityEngine; // 场景管理 需要导入该类 using UnityEngine.SceneManagement;public class c3 : MonoBehaviour {…

XUbuntu22.04之如何找到.so库所在的软件包?(二百一十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

如何添加极狐GitLab Runner 信任域名证书

本文作者 徐晓伟 极狐Gitlab Runner 信任实例域名证书&#xff0c;用于注册注册极狐 GitLab Runner。 问题 参见 极狐gitlab-runner-host.md 说明 解决方案是使用颁发给域名 gitlab.test.helm.xuxiaowei.cn 的证书&#xff0c;可以使用自己的域名去各大云厂商免费申请&#…

Linux系统中的高级多线程编程技术

在Linux系统中&#xff0c;多线程编程是一种常见的并发编程模型&#xff0c;通过利用多线程可以实现程序的并发执行&#xff0c;提高系统的性能和响应速度。在Linux系统中&#xff0c;开发人员通常使用 pthread 库来进行多线程编程&#xff0c;同时需要掌握线程同步技术以避免并…

Mybatis批量更新对象数据的两种方法

说明&#xff1a;遇到一次需要批量修改对象的场景。传递一个对象集合&#xff0c;需要根据对象ID批量修改数据库数据&#xff0c;使用的是MyBatis框架。查了一些资料&#xff0c;总结出两种实现方式。 创建Demo 首先&#xff0c;创建一个简单的Demo&#xff1b; &#xff08…

Kotlin MutliPatform Demo NoteApp

简单用Kotlin实现个记录app&#xff0c;主要实现本地数据保存。支持多端运行 使用的库: voyagernapiercoroutinesktorserializationkotlinx-datetimekoinmultiplatform-settingssqldelightMVI 项目: MyNote

go并发模式之----工作池/协程池模式

常见模式之四&#xff1a;工作池/协程池模式 定义 顾名思义&#xff0c;就是有固定数量的工人&#xff08;协程&#xff09;&#xff0c;去执行批量的任务 使用场景 适用于需要限制并发执行任务数量的情况 创建一个固定大小的 goroutine 池&#xff0c;将任务分发给池中的 g…

学习:GPT-4技术报告2023.3

原文链接&#xff1a;GPT-4的 (openai.com) 摘要&#xff1a; 我们创建了 GPT-4&#xff0c;这是 OpenAI 在扩展深度学习方面的最新里程碑。GPT-4 是一个大型多模态模型&#xff08;接受图像和文本输入&#xff0c;发出文本输出&#xff09;&#xff0c;虽然在许多现实世界场…

MySQL 多表查询 连接查询 外连接

介绍 MySQL 多表查询 连接查询 内连接 外连接分为两种&#xff0c;左外和右外连接&#xff0c; 左外&#xff1a;相当于查询表1(左表)的所有数据 包含 表1和表2交集部分的数据,完全包含左表的数据 右外&#xff1a;相当于查询表2(右表)的所有数据 包含 表1和表2交集部分的数据…

c语言的数据结构:队列

1.队列存在的实现方式及其存在意义 1.1为什么队列使用单链表实现更好 动态内存分配&#xff1a;链表在C语言中通常使用动态内存分配&#xff0c;这意味着可以在运行时根据需要动态地添加或删除节点。这对于实现一个动态大小的队列非常有用&#xff0c;因为队列的大小可以在运…

达梦数据库基础操作(二):表空间操作

达梦数据库基础操作(二)&#xff1a;表空间操作 1. 表空间操作 1.1 达梦表空间介绍 表空间的概念&#xff1a; 每个DM 数据库都是由一个或者多个表空间组成&#xff0c;表空间是一个逻辑的存储容器&#xff0c;它位于逻辑结构的顶层&#xff0c;用于存储数据库中的所有数据&am…

11-orm-自研微服务框架

ORM 当开发涉及到存储数据的时候&#xff0c;往往要用到数据库&#xff0c;用的最多的就是mysql了&#xff0c;这里我们实现一个orm&#xff0c;让开发者更加便捷的操作数据库 1. Insert实现 orm的本质就是拼接sql&#xff0c;让开发者更加方便的使用 package ormimport ("…

(二)电机控制之六步方波BLDC控制方法以及注意问题

一、直流无刷电机的简介 直流无刷电机&#xff08;Brushless Direct Current Motor&#xff0c;简称BLDC电机或BL电机&#xff09;是一种先进的电动机类型&#xff0c;其设计结合了直流电机的调速性能和交流电机的结构优势。这种电机没有传统的机械换向器和碳刷组件&#xff0…

安达发|APS自动排程软件的三种模式

APS自动排程软件是一种用于生产计划和调度的工具&#xff0c;它可以帮助制造企业实现生产过程的优化和效率提升。根据不同的需求和应用场景&#xff0c;APS自动排程软件通常有三种模式&#xff1a;基于模拟仿真模式、基于TOC的模式和扩展以及基于数学建模。下面我将详细介绍这三…

基于Python3的数据结构与算法 - 08 NB三人组小结

一、总结 三种排序算法得时间复杂度都是O(nlogn) &#xff08;存在常数之间的差异&#xff09;一般情况下&#xff0c;就运行时间而言&#xff1a;快速排序 < 归并排序 < 堆排序三种方法的缺点&#xff1a; 快速排序&#xff1a;极端情况下排序效率低归并排序&#xf…
最新文章