华为OD机试真题C卷-篇6

100分值题

  • 宽度最小的子矩阵
  • 部门人力分配
  • 电脑病毒感染
  • 会议室占用时间段
  • 路口最短时间问题
  • 5G网络建设

宽度最小的子矩阵

  • 给定一个n行 * m列的矩阵;
  • 给定一个k个整数的数组k_list;
  • 在n*m的矩阵中找一个宽度最小的子矩阵,该子矩阵包含k_list中所有的整数;
    输入描述:
    第一行输入n,m 两个整数;
    后续n行每行输入 m个数据;
    输入k值;
    输入个整数
    输出描述:
    最小宽度值,若找不到,则输出-1

示例1
输入:
2 5
1 2 2 3 1
2 3 2 3 2
3
1 2 3
输出:
2
说明,
矩阵第0、3列包含了1、2、3;
矩阵第3、4列包含了1、2、3

示例2
输入:
2 5
1 2 2 3 1
1 3 2 3 4
3
1 1 4
输出:
5
思路:

  • 滑动的子矩阵
  • 从第一列起始,找一个宽度最小的子矩阵;
  • 从第二列开始,找一个宽度最小的子矩阵;
  • 依次到最后一列…
  • 以上的宽度每次取最小值
 
class MinWidth:
    def solution(self, n, m, matrix, k_list):
        k_dict = self.to_dict(k_list)
        min_width = float("inf")
        # 类似双指针
        for start_idx in range(m):
            for end_idx in range(start_idx, m):
                temp_list = []
                # 获取当前子矩阵的所有元素
                for i in range(n):
                    temp_list.extend(matrix[i][start_idx:end_idx+1])
                temp_dict = self.to_dict(temp_list)
                # 集合操作
                flag = True
                for key in k_dict:
                    if key in temp_dict and k_dict[key] <= temp_dict[key]:
                        continue
                    else:
                        flag = False
                        break

                if flag:
                    min_width = min(min_width, end_idx - start_idx + 1)
                    break
        print(min_width)

    def to_dict(self, alist):
        dict_ = {}
        for i in alist:
            dict_[i] = dict_.get(i, 0) + 1
        return dict_


if __name__ == '__main__':
    min_width = MinWidth()

    while True:
        try:
            n, m = list(map(int, input().strip().split()))
            matrix = []
            for i in range(n):
                matrix.append(list(map(int, input().strip().split())))
            k = int(input().strip())
            k_list = list(map(int, input().strip().split()))
            min_width.solution(n, m, matrix, k_list)

        except KeyboardInterrupt:
            break

&nbsp

部门人力分配

  • requirements表示开发需求数组,每个值表示当前需求的月数,所有需求需要在m个月内完成;
  • 每个月最多有2个需求完成开发;人力安排后每个月人力是固定的;
  • 在满足需求开发进度的情况下,每个月需要的最小人力是多少?
    输入描述:
    第一行输入m
    第二行输入requirements 数组, 值>=1 长度为n;
    1<=n/2<=m<=n<=10000
    输出描述:
    输出部门需要的人力?

示例1
输入:
3
3 5 3 4
输出:
6
说明:
开发时间为5个月的需求在一个月内完成,则需要5个人;
3 3 合并到一个月完成,需要6个人力;
3 4合并到一个月完成,需要7个人力;
4 5合并到一个月完成,需要9个人力;

示例2
输入:
3
3 3 4 5 6
输出:
8

示例3
输入:
3
3 3 4 5 6 2
输出:

思路:

  • n个需求,n个月完成需要的人力较少,m个月完成人力增加;
  • n个需求在m个月内完成,当n==m时,取requirements的最大值;
  • n>m时,requirements升序排序,依次取出不需要合并的最大值放入temp_list,直到n==m的情况;
    • 剩余需要合并的数对,利用双指针进行两两合并(最大值组合一个最小值),求的和放入temp_list;
    • 最终 temp_list 长度会等于m,此时取temp_list的最大值即可;

class LeastResource:
    def solution(self, requirements, m):
        n = len(requirements)
        requirements.sort()
        temp_list = []
        if n == m:
            result = max(requirements)
            print(result)
        else:
            while n / 2 < m:
                temp_list.append(requirements.pop())
                n -= 1
                m -= 1
            # 剩余需求 需要两两组合
            self.merge(temp_list, requirements)
            result = max(temp_list)
            print(result)

    def merge(self, temp_list, requirements):
        cur_n = len(requirements)
        pre = 0
        cur = cur_n - 1
        while pre < cur:
            cur_sum = requirements[pre] + requirements[cur]
            temp_list.append(cur_sum)
            pre += 1
            cur -= 1


if __name__ == '__main__':
    least_resource = LeastResource()
    while True:
        try:
            m = int(input().strip())
            requirements = list(map(int, input().strip().split()))
            least_resource.solution(requirements, m)
        except KeyboardInterrupt:
            break

二分法
最小人力范围在requirements的最大值—最大值+次最大值 之间;


 
m = int(input())
nums = [int(x) for x in input().split(" ")]
nums.sort()
 
def cal(k, nums, length) :
    low = 0
    high = length - 1
    months = 0
    while (True) :
        if(low > high):
            break
        else :
            if (nums[low] + nums[high] > k) :
                high -= 1
            else :
                low += 1
                high -= 1
            
            months+=1
    return months
 
 
low = nums[len(nums)-1]
high = nums[len(nums)-1] + nums[len(nums)-2]
 
result = -1
while (True) :
    if(low > high):
        break
    else :
        k = int((low + high) / 2)
        if (cal(k, nums, len(nums)) <= m) :
            high = k - 1
            result = k
        else :
            low = k + 1
print(result)

 

电脑病毒感染

  • 一个局域网内有n台电脑,编号为 0 -> n-1,电脑之间病毒感染时间用t表示;
  • 现在网络内已有一台电脑被病毒感染;
  • 求其感染所有其他电脑最少的时间,若最后有电脑不会感染,则返回-1;
  • 数组times 表示一台电脑把相邻的电脑感染所用的时间;
  • path[i] = {i, j, t} 表示 电脑i 感染 电脑j 所用的时间t;
    输入描述:
    第一行输入n 在[1, 200]
    第二行输入m, 表示m条网络;
    后m行,每行输入i,j,t, 1<=i,j<=n
    最后一行输入携带病毒的电脑编号;
    输出描述:
    感染全部电脑的最少时间,不能感染全部输出-1

示例1
输入:
4
3
2 1 1
2 3 1
3 4 1
2
输出:
2

思路

  • 单源最短路径
 
n = int(input())
count = int(input())
time = [float('inf') for i in range(n)]
 
matrix=[[0 for i in range(3)] for j in range(count)]
for j in range(count):
    nums = [int(x) for x in input().split(" ")]
    matrix[j][0] = nums[0] 
    matrix[j][1] =nums[1]
    matrix[j][2] = nums[2]
 
start = int(input())
time[start-1] = 0
 
for i in range(n):
    for j in range(count):   
        if (time[matrix[j][0]-1] + matrix[j][2] < time[matrix[j][1]-1]) :
            time[matrix[j][1]-1] = time[matrix[j][0]-1] + matrix[j][2]
        
result = 0
i=0
while(True):
    if(i>=n):
        print(result)
        break
    else :
        if (time[i] == float('inf')) :
            print(-1)
            break
        
        if(time[i]>result):
            result = time[i]
    i+=1
 

 

会议室占用时间段

在这里插入图片描述
在这里插入图片描述

 
meetings = [[1,4], [2,5],[7,9], [14,18]]
def merge(meetings) :
    sorted(meetings,key=lambda x: (x[1],x[0]))
    result = []
    result.append(meetings[0])
    cur = result[0]
    i=1
    while(True):
        if(i>=len(meetings)):
            break
        else :
            if (cur[1] >= meetings[i][0] and cur[1] <= meetings[i][1]) :
                cur[1] = meetings[i][1]
            elif(cur[1] > meetings[i][1]):
                pass
            else :
                result.append(meetings[i])
                cur = meetings[i]
        i+=1
 
    print(result)
    return result
merge(meetings)

 

路口最短时间问题

在这里插入图片描述
在这里插入图片描述


directions = [[-1,0],[0,1],[1,0],[0,-1]]
 
def calcTime(lights, timePerRoad, rowStart, colStart, rowEnd, colEnd) :
    result = [[[float('inf') for i in range(4)] for j in range(colEnd+1)] for k in range(rowEnd+1)]
 
    pq = queue.PriorityQueue()
 
    for i in range(4):
        pq.put([0, [rowStart, colStart, i, 0]])
        result[rowStart][colStart][i] = 0
    
 
    while (True) :
        if(pq.qsize()<=0):
            break
        else :
            point_t = pq.get() 
            point = point_t[1]
            if (point[3] > result[point[0]][point[1]][point[2]]) :
                continue
            
            for  i in range(4):
                if (not(directions[i][0] == 1 and directions[i][1] == 0)) :
                    new_dir = (point[2] + i) % 4 
                    new_x = point[0] + directions[new_dir][0]
                    new_y = point[1] + directions[new_dir][1]
                    if (new_x >= 0 and new_x < len(lights) and new_y >= 0 and new_y < len(lights[new_x])) :
                        new_speed = point[3] + timePerRoad 
                        if (not(directions[i][0] == 0 and directions[i][1] == 1)):
                            new_speed += lights[point[0]][point[1]]
                          
                        if (new_speed < result[new_x][new_y][new_dir]) :
                            result[new_x][new_y][new_dir] = new_speed
                            pq.put([new_speed, [new_x, new_y, new_dir, new_speed]]) 
 
    return min(min(result[rowEnd][colEnd][0],result[rowEnd][colEnd][1]), result[rowEnd][colEnd][2]) 
 
lights = [[1,2,3],[4,5,6],[7,8,9]]
timePerRoad = 60
rowStart = 0
colStart = 0
rowEnd = 2
colEnd = 2
print(calcTime(lights,timePerRoad, rowStart,colStart, rowEnd, colEnd))

 

5G网络建设

  • 选取n个地点建设5G基站,地点编号1 -> n;
  • 各个基站之间使用光纤连接,设计算法计算连通所有基站的最小成本;
  • 基站的连通具有传递性,A->B连通,B->C连通,则A->C连通;
    输入描述:
    第一行输入基站个数n, 0< n <=20;
    第二行输入已具备光纤连接的基站对数m;
    第三行开始的m行,格式为 X Y Z P,X Y表示基站编号 1-n且不相等,Z表示XY之间的光纤成本(0, 100),P表示是否已存在光纤连接,0未连接,1已连接;
    输出描述:
    输出最小的建设成本,无法建设完成输出-1;

示例1
输入:
3
3
1 2 3 0
1 3 1 0
2 3 5 0
输出:
4
说明:只需在1、2及2、3之间建设光纤

示例2
输入:
3
1
1 2 5 0
输出:
-1

示例3
输入:
3
3
1 2 3 0
1 3 1 0
2 3 5 1
输出:
1

在这里插入图片描述


class UF:
    def __init__(self, n):
        self.root = [i for i in range(n+1)]
        self.rank = [1 for i in range(n+1)]
        self.count = 0
 
    def find(self,x):
        if (x == self.root[x]):
            return x
        
        self.root[x] = self.find(self.root[x])
        return self.root[x]
    
    def union(self,x, y):
        self.root[self.find(x)] = self.find(y)
        self.count+=1
    
    def get_count(self):
        return self.count
 
n = int(input())
m = int(input())
uf = UF(n)
networks = []
for i in range(m):
    data = [int(x) for x in input().split(" ")]
    
    if (data[3] == 1):
        if (uf.find(data[0]) != uf.find(data[1])):
            uf.union(data[0], data[1])
    else:
        networks.append([data[0],data[1],data[2]])
    
 
sorted(networks, key=lambda x : x[2])
 
result = 0
i=0
while(True):
    if(i>=len(networks)):
        break
    else:
        
        if (uf.find(networks[i][0]) != uf.find(networks[i][1])):
            uf.union(networks[i][0], networks[i][1])
            result += networks[i][2]
            
            if (uf.get_count() == n - 1):
                break
    i+=1
 
 
if(uf.get_count() != n - 1):
    result = -1 
print(result)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/428062.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【三维重建】VastGaussian:用于大场景重建的大3D Gaussian(CVPR 2024)

题目&#xff1a;VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction 来源&#xff1a;清华大学&#xff1b;华为诺亚&#xff1b;中国科学院 链接&#xff1a;https://vastgaussian.github.io/ 总结&#xff1a;VastGaussian&#xff1a;基于3D GS的分块优化重…

2024年天津市安全员B证证模拟考试题库及天津市安全员B证理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年天津市安全员B证证模拟考试题库及天津市安全员B证理论考试试题是由安全生产模拟考试一点通提供&#xff0c;天津市安全员B证证模拟考试题库是根据天津市安全员B证最新版教材&#xff0c;天津市安全员B证大纲整理…

【Linux】Linux原生异步IO:AIO

1、IO模型 1.1 简述 相信大家在搜索的时候,都会看到下面这张图,IO的使用场景:同步、异步、阻塞、非阻塞,可以组合成四种情况: 同步阻塞I/O: 用户进程进行I/O操作,一直阻塞到I/O操作完成为止。同步非阻塞I/O: 用户程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可…

世界的本质是旋转(5)-在复平面上驱动软件无线电SDR交换BPSK波形

在上一篇文章中&#xff0c;我们介绍了复平面、拍照采样的一些思维实验。从本节开始&#xff0c;转入现实应用&#xff0c;通过控制复平面向量的位置&#xff0c;实现一个完整的BPSK全双工通信通道。 发射方&#xff1a;通过控制复平面向量在各个时刻的位置来携带信息的技术&a…

Socks5代理协议:原理、应用与优势

在计算机网络中&#xff0c;代理协议是一种用于转发客户端请求的机制。Socks5是其中一种广泛使用的代理协议。它主要工作在传输层和应用层之间&#xff0c;位于OSI参考模型的第五层&#xff08;会话层&#xff09;。其设计初衷是为了帮助授权用户突破防火墙限制&#xff0c;获取…

【洛谷 P8682】[蓝桥杯 2019 省 B] 等差数列 题解(数学+排序+辗转相除法)

[蓝桥杯 2019 省 B] 等差数列 题目描述 数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一部分的数列&#xff0c;只记得其中 N N N 个整数。 现在给出这 N N N 个整数&#xff0c;小明想知道包含这 N N N 个整数的最短的等差数列有几项&#xff1f; 输…

远程调用--webClient

远程调用webClient 前言1、创建webClient2、准备数据3、执行请求4、接收返回响应到的数据整体代码 前言 非阻塞、响应式HTTP客户端 1、创建webClient WebClient client WebClient.create();2、准备数据 Map<String,String> params new HashMap<>();params.pu…

google最新大语言模型gemma本地化部署

Gemma是google推出的新一代大语言模型&#xff0c;构建目标是本地化、开源、高性能。 与同类大语言模型对比&#xff0c;它不仅对硬件的依赖更小&#xff0c;性能却更高。关键是完全开源&#xff0c;使得对模型在具有行业特性的场景中&#xff0c;有了高度定制的能力。 Gemma模…

c语言游戏实战(10):坤坤的篮球回避秀

前言&#xff1a; 这款简易版的球球大作战是博主耗时两天半完成的&#xff0c;玩家需要控制坤坤在游戏界面上移动&#xff0c;来躲避游戏界面上方不断掉下来的篮球。本游戏使用C语言和easyx图形库编写&#xff0c;旨在帮助初学者了解游戏开发的基本概念和技巧。 在开始编写代…

php开发项目 docx,pptx,excel表格上传阿里云,腾讯云存储后截取第一页生成缩略图

服务器或者存储上传的word,ppt和excel表格需要截取内容展示的时候,就需要管理后台每次上传文件时根据不同文件类型截取图片保存起来,并讲图片的地址保存到数据字段中.网上搜索了很多相关文章遇到的坑不少,经过2天时间终于完成了,将代码和遇到的问题完整记录下来. 本文用的…

【JavaEE进阶】 Linux常用命令

文章目录 &#x1f343;前言&#x1f334;ls 与 pwd&#x1f6a9;ls&#x1f6a9;pwd &#x1f38d;cd&#x1f6a9;认识Linux目录结构 &#x1f340;touch与cat&#x1f6a9;touch&#x1f6a9;cat &#x1f332;mkdir与rm&#x1f6a9;mkdir&#x1f6a9;rm &#x1f384;cp与…

长贵对赵本山说:你需要我们家大脚,我立马给你配双大鞋!

长贵对赵本山说&#xff1a;你需要我们家大脚&#xff0c;我立马给你配双大鞋&#xff01; --小品《乡村爱情》&#xff08;中2&#xff09;的台词 表演者&#xff1a;赵本山 于月仙 王小利 唐鉴军等 &#xff08;接上&#xff09; 哈哈哈 伊拉克啊 这地方也不产这玩意吧 …

Blazor 向 ECharts 传递 option

目标 将ECharts封装为Blazor组件&#xff0c;然后通过jsRuntime向ECharts传递参数&#xff0c;即设置option。 封装ECharts 步骤&#xff1a; 1. 在index.html中引入echarts.min.js&#xff1b; 2. 创建blazor组件&#xff0c;将ref传递给js用于初始化echarts&#xff1b; …

指定新加坡|高职老师自费赴新加坡国立大学访学交流

K老师任职于某高职院校&#xff0c;希望通过自费出国访学&#xff0c;达到拓宽国际化视野&#xff0c;为本校的专业发展寻求新契机的目的&#xff0c;并将访学目标国家指定为新加坡。最终我们为其获得新加坡国立大学的邀请函。因交叉性、前沿性的专业特性&#xff0c;K老师的出…

构建安全的REST API:OAuth2和JWT实践

引言 大家好&#xff0c;我是小黑&#xff0c;小黑在这里跟咱们聊聊&#xff0c;为什么REST API这么重要&#xff0c;同时&#xff0c;为何OAuth2和JWT在构建安全的REST API中扮演着不可或缺的角色。 想象一下&#xff0c;咱们每天都在使用的社交媒体、在线购物、银行服务等等…

大气颗粒物和VOCs PMF源解析实用干货

目前&#xff0c;大气颗粒物和臭氧污染成为我国亟待解决的环境问题。颗粒物和臭氧污染不仅对气候和环境有重要影响&#xff0c;而且对人体健康有严重损害。而臭氧的前体物之一为挥发性有机物&#xff08;VOCs&#xff09;。为了高效、精准地治理区域大气颗粒物和臭氧污染&#…

115.龙芯2k1000-pmon(14)- pmon编程优化

通过上面的分析&#xff0c;发现&#xff0c;其实gzrom-dtb.bin其实有很多空白区域&#xff0c;而且空白区域填充的都是0&#xff0c;这对flash来说并不友好&#xff0c;能否把填充的位置改为ff呢&#xff0c;这样编程的速度也会加快&#xff0c;对flash来说也是一种保护呢。 …

【网站项目】121开放式教学评价管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

Linux速览(1)——基础指令篇

在上一章对Linux有了一些基础了解之后&#xff0c;本章我们来学习一下Linux系统下一些基本操作的常用的基础指令。 目录 1. ls 指令 2. pwd&&whoami命令 3. cd 指令 4. touch指令 5.mkdir指令&#xff08;重要&#xff09;&#xff1a; 6.rmdir指令 && …

【虚拟机安装centos7后找不到网卡问题】

最近开始学习linux&#xff0c;看着传智播客的教学视频学习&#xff0c;里面老师用的是centos6.5&#xff0c;我这边装的是centos7最新版的 结果到了网络配置的这一节&#xff0c;卡了我好久。 我在centos一直找不到我的网卡eth0&#xff0c;只有一个回环网口&#xff0c;在/…